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Pt 1. Dose-response, decision 
making and design
The problem statement



The Clinical Question

•“What do you need to know? How well do you 
need to know it?” – Lewis Sheiner
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Refining the dose-range
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The Clinical Question

•“What do you need to know? How well do you 
need to know it?” – Lewis Sheiner

•Pick ONE.
• Then design and optimise for that ONE objective.



Decision making

• We need to turn the clinical question into a metric which we can use 
to select / drop doses:

• (Posterior) variance on ED50.
• P(Effect at Dose X > 0) > 1-beta.
• Interval on ED95 less than 2-fold span.
• Drop if P(Effect at Dose X > Y) < alpha.

• Y is Marketable difference / clinically meaningful difference.



Pt 2. Bayesian adaptive designs



Key players

Mike Krams Don Berry Andy Grieve Peter Mueller Tom Parke

…and many more



Normal Dynamic Linear Model

• Flexible model that describes effect at each dose using simple 
updating function.

• FAST updating, Normality assumptions, means + variances
• μdose = X = μ dose = X-1 + δdose = X-1 + ω
• δdose = X = δdose = X-1 + ε

ω ~ N(0, Vσ2)
ε ~ N(0, Wσ2)
W is a smoothing parameter, as a function of estimated variability
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ASTIN study in stroke
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NDLM – Good, bad and ugly

• Good
• Quick! Able to make predictive inferences about effect at each dose.
• Flexible! Non-monotonic
• Worked well in ASTIN where there was LOTS of information.
• Seems to kill drug projects very effectively.

• Bad
• Needs informative prior on smoothing parameter and/or LOTS of data.
• Extrapolation outside of individual dose effects is limited.

• Ugly
• Lots of (active) doses can lead to increased placebo effect.



Pt 3: Bayesian design with 
parametric models



Parametric models

• Neal Thomas and collaborators 
have found that most dose-
response and dose-finding studies 
can be described by an Emax
model.

𝐸𝐸(𝑌𝑌|𝐷𝐷) = 𝐸𝐸𝐸 +
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜆𝜆

(𝐸𝐸𝐷𝐷𝐸𝐸𝜆𝜆 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜆𝜆)

Neal Thomas



Informative priors



Informative priors

• We typically know something about the Placebo response in an indication – prior 
on E0.

• We can put a sceptical prior on Emax i.e. we need sufficient evidence of effect to 
go forward, otherwise we stop.

• Most drugs fail. 
• If we can fail quickly and with confidence then that’s good.

• Hill parameter (λ) can typically have an informative prior – Neal Thomas’ work 
shows λ in the range (0, 6) and he advocates Beta distribution.

• If comparing against a reference treatment then we should reflect that 
knowledge in an informative prior.



Problems: ED50 and Emax

• ED50 and Emax are usually highly correlated
• We can reparameterise using S0 = Emax / ED50 (as per Schoemaker 1998*) 

• Even weakly informative priors are sufficient to constrain parameter 
space to improve convergence.

• And don’t forget optimal design ideas.
• Importance of low doses to better estimate ED50.

• Estimating Potency for the Emax-Model Without Attaining Maximal Effects. Schoemaker, R.C., van Gerven, J.M.A. & Cohen, A.F. 
J Pharmacokinet Pharmacodyn (1998) 26: 581. https://doi.org/10.1023/A:1023277201179

https://doi.org/10.1023/A:1023277201179


Application to design

From: A Bayesian design and analysis for dose-response using informative prior information.
Smith, MK and Marshall, S. J Biopharm Stat. 2006;16(5):695-709. DOI: 10.1080/10543400600860535

Scott Marshall

https://www.ncbi.nlm.nih.gov/pubmed/17037266
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Pt 4: Quantitative decision 
making



Key players

Ken Kowalski Jonathan French Matt Hutmacher



Quantitative decision making –
making the right decision

Decisions using lower bound > 0 and upper bound <= 3

From: Decision-Making in Drug Development: Application of a Model Based Framework for Assessing 
Trial Performance. Smith M.K., French J.L., Kowalski K.G., Hutmacher M.M., Ewy W. (2011)  In: Kimko H., 
Peck C. (eds) Clinical Trial Simulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 1. 
Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7415-0_4

https://doi.org/10.1007/978-1-4419-7415-0_4
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Application of quantitative decision criteria in 
Crohn’s Disease

Base criteria: 15% improvement over placebo in Response70 at week 4.
• adalimumab-like

Pessimistic: 10% improvement over placebo in Response70 at week 4.
• certolizumab-like

Optimistic: 20% improvement over placebo in Response70 at week 4
• infliximab-like



Meta-analysis of prior data

Question: “If we had adalimumab efficacy then would 
we make the right decision with our Proof of Concept 
study design (n/group=155)?”
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Simulation

• Truth: Each simulation replicate has a set of model parameters + 
individual “study” effect.

• “Go” if difference in probabilities is >0.15

• Trial: Use these response probabilities in a Binomial dist. with size 
n=155 to get observed number of responses in each arm.

• “Go” if difference in observed response rate is >0.15



Simulation results using QDC
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Simulation results using QDC

• Probability of achieving base case (a 15% difference over placebo) is 
70%.

• Regardless of design or sample size.

• Pessimistic: P(Delta>10%) = 84%
• Optimistic:   P(Delta>20%) = 28%

• Sponsor choice about whether this is sufficient to START a trial.



Simulation results using QDC

• Probability of correct decision is 67%
• Sponsor choice about the accuracy of the quantitative decision metric.
• 67% probably isn’t high enough.

• P(Trial NO GO | True GO) is 23%.
• Not good at this stage of development (POC)
• Kills good drugs.

• Probability of correct decisions is a function of design + analysis 
methodology + decision criteria.



In Summary



I have been VERY lucky in having interesting and very clever people to work and 
collaborate with...

I have been VERY lucky in having managers who have allowed me to “play”, but 
who held me to account to deliver the things I played with…

Being “lucky” means being in the right place, at the right time, with the right 
interests, the right skill-set, the right mind-set and having the right people around 
you to help you achieve something amazing.
• But… YOU can manufacture some luck if you’re ready to engage when the 

opportunities come...

Have good ideas. But implement them, and turn that into something that 
somebody else could use.



Number one rule: Be kind…
…all else is details.

http://teachtogether.tech/

http://teachtogether.tech/
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