

Bayesian individual dynamic predictions of biomarkers and risk of event in joint modelling (with uncertainty): a comparison between Stan, Monolix and NONMEM

François Riglet, France Mentre and Julie Bertrand

INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, France

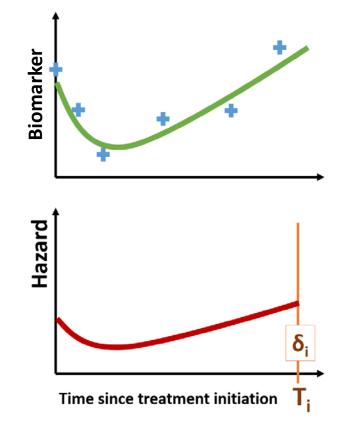
July 11th, 2019

nstitut national le la santé et de la recherche médicale

Joint modeling of longitudinal and survival data

Longitudinal data

- y_i : vector of longitudinal measurements (viral load, bacteria load, lymphocytes, pharmacokinetics, ...)
- can be described by a nonlinear model



Time-to-event data

- T_i : observed event time (toxicity, inefficiency, death, ...)
- δ_i : event indicator = $\begin{cases} 1\\ 0 \end{cases}$

If event observed If event not observed

Two objectives

- To characterize the (non-linear) kinetics of a biomarker in presence of a time-to-event
- To characterize the impact of this kinetics on a time-to-event
- Reduce bias on biomarker kinetics parameters and potentially those on survival parameters

Nonlinear joint model

2 submodels

→ Longitudinal part – Nonlinear mixed-effects models (NLMEM): Let $y_i(t)$ be the observed longitudinal data for patient i = {1, ..., N}

$$y_i(t) = f(t, \psi_i) + \sigma e_i(t)$$

- *f*: predictions of the model
- $\psi_i = \mu \times \exp(\eta_i)$: individual parameters
- $e_i \sim \mathcal{N}(0, 1)$: residual errors

with $\mu = v(\mu_1, ..., \mu_q)$, Vector of fixed effects $\eta_i \sim \mathcal{N}(0, \Omega)$, Vector of random effects where Ω is the variance-covariance matrix of size $q \times q$ with diagonal elements $\{\omega_1^2, ..., \omega_q^2\}$

3

→ Survival part – Hazard function h for patient i

$$S_i(t|f(t,\psi_i)) = P(T_i \ge t) = \exp\left[-\int_0^t h_i(t|f(t,\psi_i)) dt\right]$$

with $h_i(t|f(t,\psi_i)) = h_0(t) \times \exp(\boldsymbol{\beta} \times f(t,\psi_i))$ $h(t) = \lim_{\Delta t \to 0} \left(\frac{\Pr(t \le T < t + \Delta t|T \ge t)}{\Delta t}\right)$

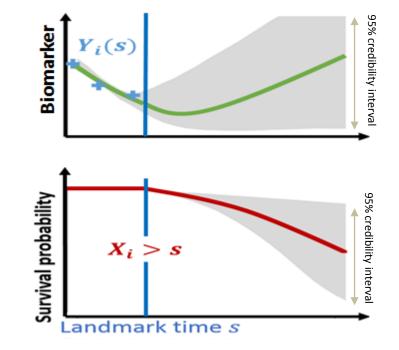
→ Well characterize the association between biomarker kinetics and survival in order to perform dynamic predictions at the individual level and identify high-risk patients

Individual dynamic predictions

- True joint model is known
- \rightarrow Population parameters θ used as priors
- Landmark time (s): time of interest until which data are observed
- Horizon time (t_{hz}) : time of predictions where $t = s + t_{hz}$ with $t_{hz} > 0$
- → Predict
 - $y_i(s+t,Y_i(s),\theta)$ the longitudinal biomarker predictions with $Y_i(s) = \{y_i(t); 0 \le t \le s\}$
 - $S_i(s+t|s) = P(T_i > s+t|T_i > s, Y_i(s), \theta)$ • the conditional survival probability with T_i : event time
 - For $l = \{1, ..., L\}$, L being the number of Monte Carlo samples • $\blacktriangleright \text{ Draw } \psi_{i,l} \sim \{\psi_i | T_i > s, Y_i(s), \theta\}$
 - \succ Compute $y_{i,l}(s+t)$ and $S_{i,l}(s+t|s)$
 - $\widehat{y}_i(s+t) = median\{y_{i,l}(s+t)\}_{l=1,\dots,l} \text{ and } \widehat{CI}_{0.95}$
 - $\widehat{S}_i(s+t|s) = median\{S_{i,l}(s+t|s)\}_{l=1} \text{ and } \widehat{CI}_{0.95} \text{ with } \widehat{CI}_{0.95} : 95\% \text{ credibility interval}$

Rizopoulos (2011) Biometrics

Rizopoulos (2012) Joint Models for Longitudinal and Time-to-Event Data Desmée et al. (2017) BMC Med Res Methodo



Estimation methods for non linear joint model

- Markov Chain Monte Carlo (MCMC) Algorithms
 - Metropolis-Hastings (MH)^[1]
 - Hamiltonian Monte Carlo (HMC)^[2]
- Implementation in several modeling software
 - No-U-Turn Sampler (NUTS), a more efficient variant of HMC, since 2014^[3]:

 → Stan(2.18.0)^[4]: a programming language used for Bayesian statistical modeling
 - MH since 2016^[5]:

NONMEM7.4^{®[6]}: the most popular software for NLMEM in population pharmacokinetics and pharmacodynamics (PK/PD), developed at the University of California, San Francisco in the late 1970s
 Monolix2018R2^{®[7]}: a software developed for NLMEM in population PK/PD, developed at INRIA in 2005

Lavielle (2014) Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools
 Neal et al. (2011) MCMC using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo
 Hoffman & Gelman (2014) Journal of Machine Learning Research

[4] https://mc-stan.org/

[5] Lavielle & Riba (2016) Pharm Res
[6] Sheiner (1980) J Pharmacokinet Biopharm.
[7] Lavielle (2007) J Pharmacokinet Pharmacodyn.

To compare the abilities of:

Stan(2.18.0) (already validated by Desmée et al.^[1])

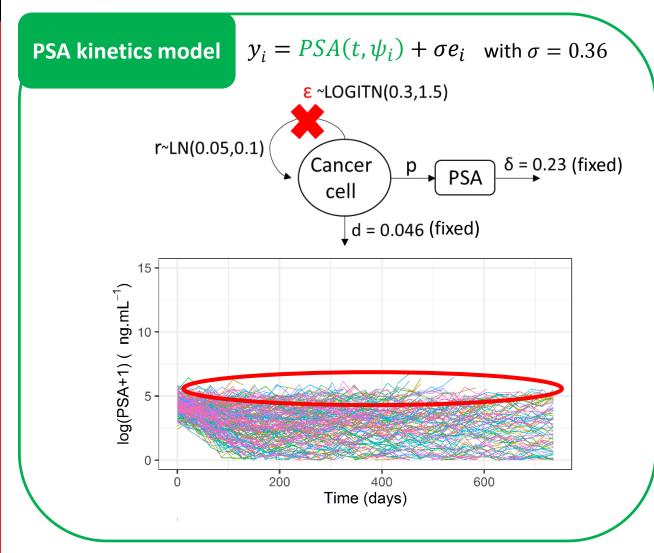
Monolix2018R2[®]

> NONMEM7.4®

to perform Bayesian individual dynamic predictions of biomarker kinetics and risk of death, with uncertainty, using simulated data

Simulation study design

 Inspired by Desmée et al. (AAPS Journal, 2015) about joint modeling of prostate cancer antigen (PSA) as longitudinal data and overall survival as risk of event



Survival model	h_0 : Weibull		
$h_{i,l}(t PSA(t,\psi_i)) = \frac{k}{\lambda} \times \left(\frac{t}{\lambda}\right)^{k-1} \times e^{\beta \times PSA(t,\psi_i)}$			
Survival Parameters	Low Link	High Link	Short Survival
λ (days)	765	2150	560
k		1.5	
β	0.005	0.02	0.02
Survival at the end of the study (%)	25	40	5
L	II		· /

Evaluation at each landmark

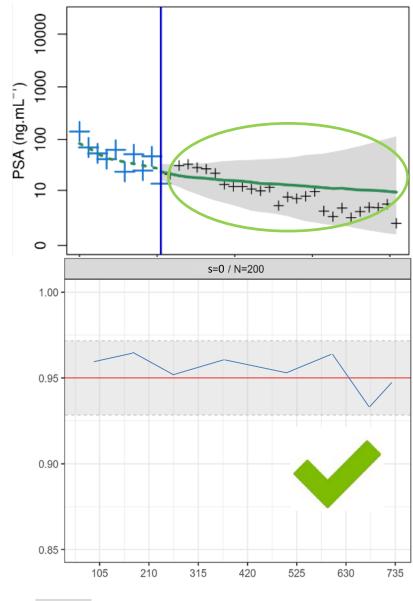
• Accuracy and Precision on individual parameters, $L = 200 REE_{i,l}$ per patient i

 ψ_i^{*} : Simulated i parameter

 $\widehat{\psi_{i,l}}$: Estimated i parameter

- $REE_{i,l} = \frac{\psi_i^* \widehat{\psi_{i,l}}}{\psi_i^*}$, Relative estimation errors
- $RBias_i(\%) = 100 \times \left(\frac{1}{L} \times \sum_{l=1}^{L} REE_{i,l}\right)$
- $RRMSE_i(\%) = 100 \times \sqrt{\frac{1}{L} \times \sum_{l=1}^{L} REE_{i,l}^2}$
- Individual dynamic prediction plots
 - PSA: $\hat{y}_i(s+t) = median\{y_{i,l}(s+t)\}_{l=1,...,L}$ and $\widehat{CI}_{0.95}$
 - Survival: $\widehat{S}_i(s+t|s) = median\{S_{i,l}(s+t|s)\}_{l=1,\dots,L}$ and $\widehat{CI}_{0.95}$
- Coverage rate
 - PSA: Coverage rate(s + t|s) = $\frac{1}{N_{sim}} \sum_{i=1}^{N_{sim}} I_{\{PSA(t, \psi_i^*) \in \widehat{CI}_{0.95}\}}$

• Survival: Coverage rate(s + t|s) =
$$\frac{1}{N_{sim}} \sum_{i=1}^{N_{sim}} I_{\{S(t,\psi_i^*)\in\widehat{CI}_{0.95}\}}$$

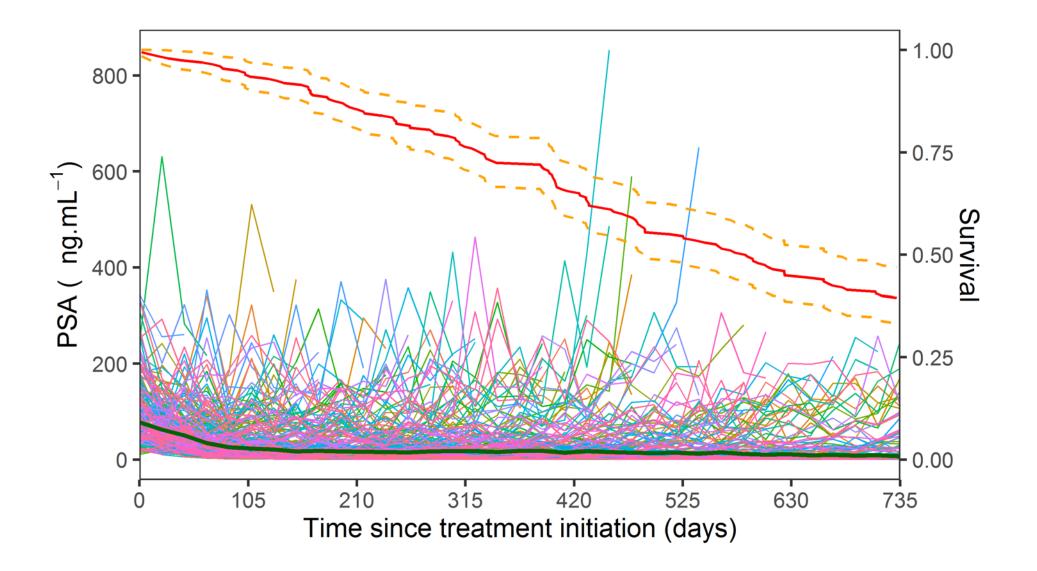


PI95%: 95% prediction interval around 0.95

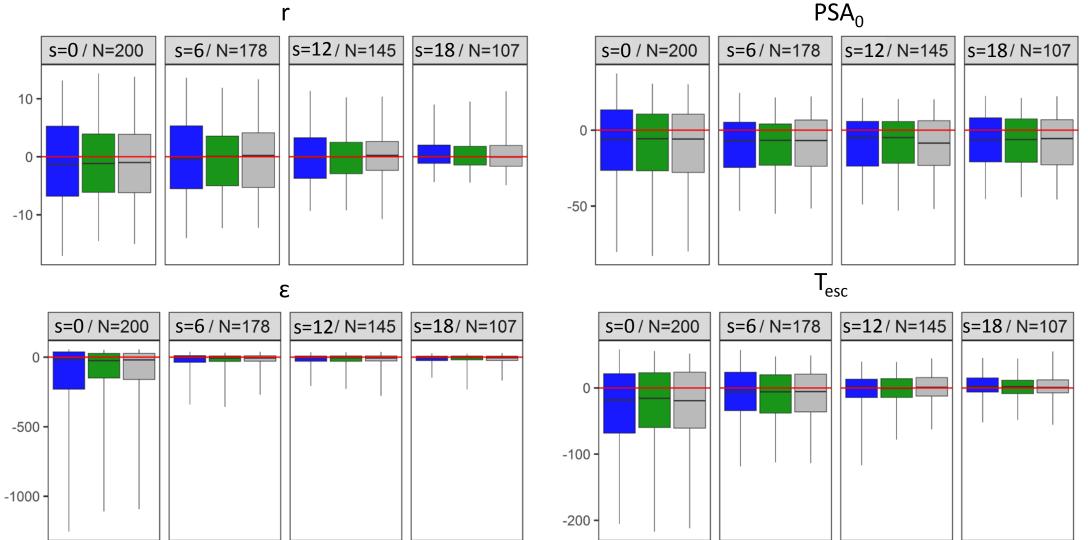
Software settings

Stan(2.18.0)	Monolix2018R2®	NONMEM7.4®		
Calibration to reach the target distribution				
Warmup: 500 iterations Chain : 1	ρ _{mcmc} = 1 L _{mcmc} = 500 Chain: 1	CTYPE = 0 NBURN = 500 NITER = 0 Chain = 1		
Calibration to obtain L $\psi_{i,l}$				
Thinning: 1 iteration Sampling: L iterations	Simulated parameters per individual: L	EONLY = 1 ISAMPLE = L		
	Sampling of $\psi_{i,l}$			
L iterations of the sampling phase using true population parameters, μ and ω, as prior parameters	\rightarrow L draws from the conditional distribution using true population parameters, μ and ω , as fixed parameters			

High Link scenario data

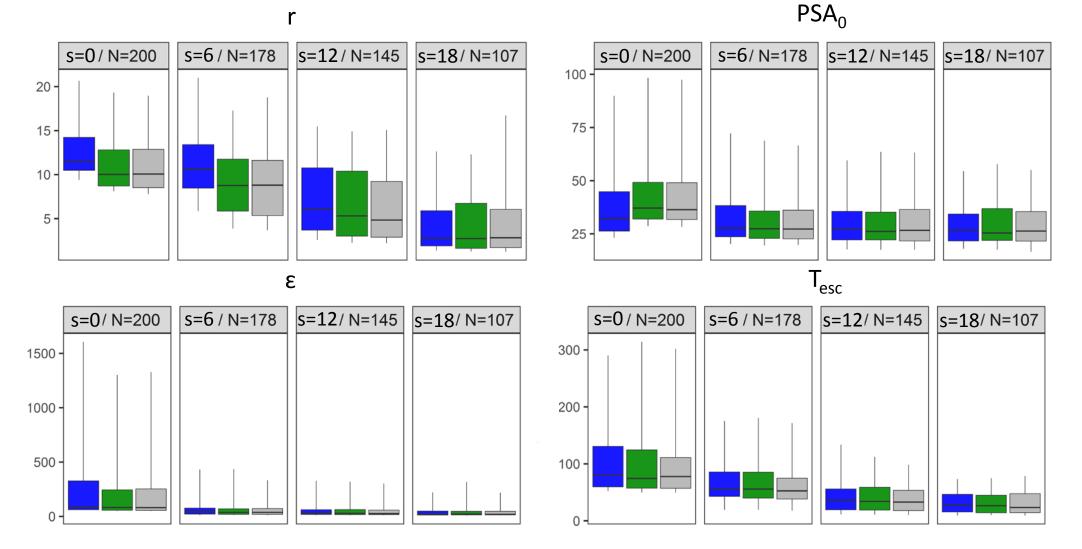


Individual parameters *RBias_i*(%)



- Low bias on PSA kinetic parameters in early landmarks to be corrected as data are accumulated
- Similar results with all software

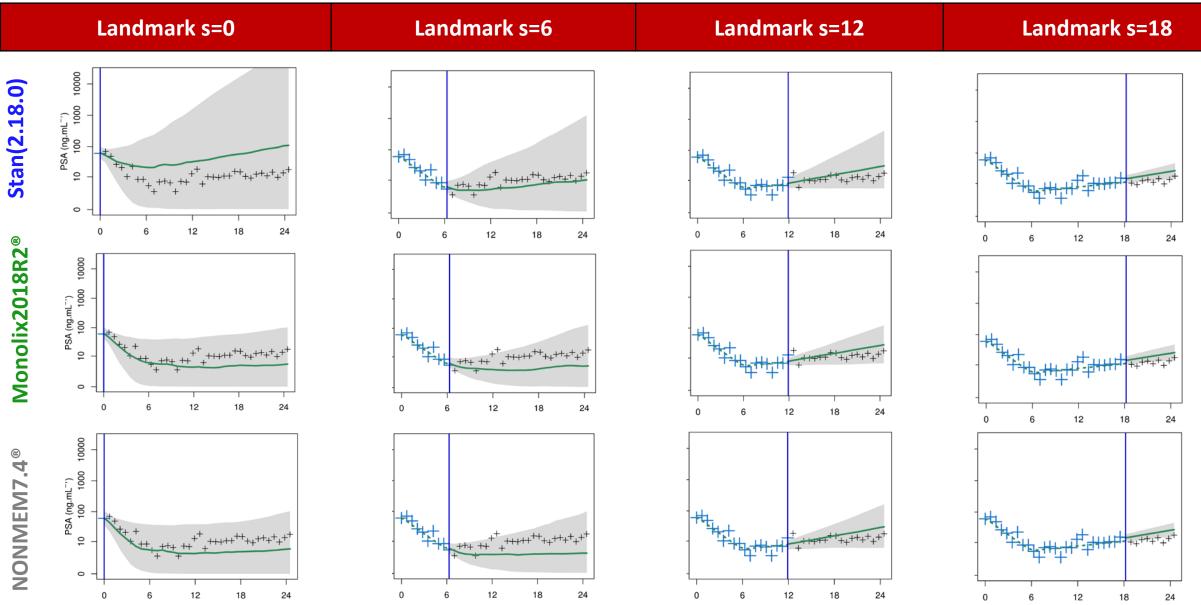
Individual parameters $RRMSE_i(\%)$



Parameters increase in precision as data are accumulated

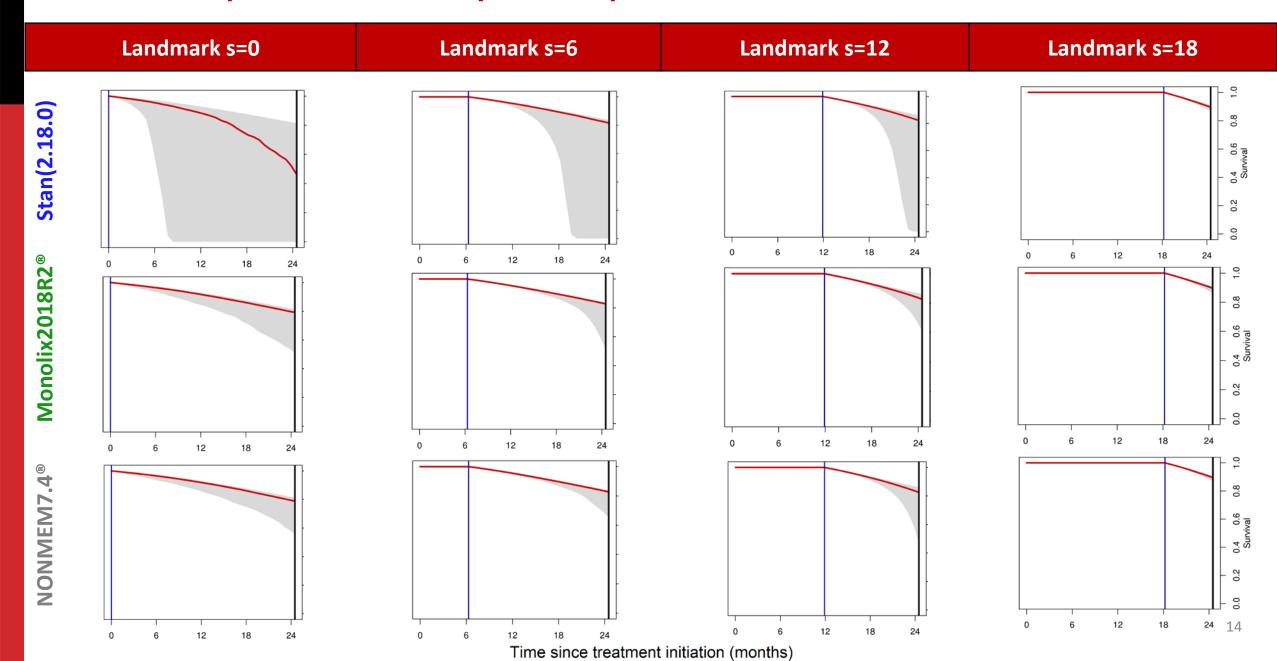
Similar results with all software

Individual plot: PSA dynamic predictions

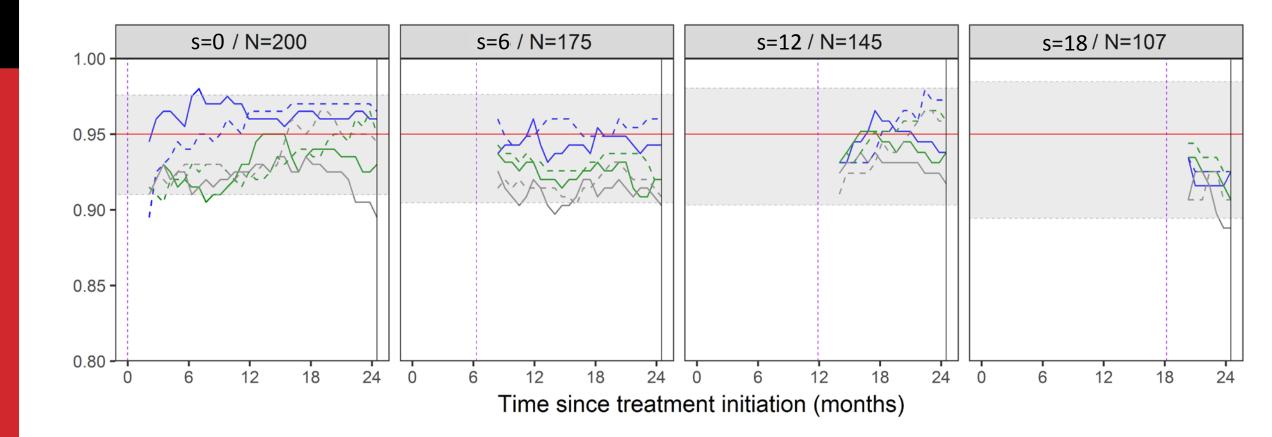


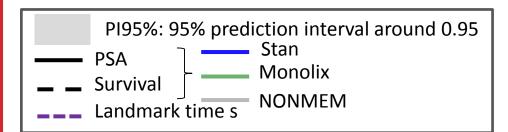
Time since treatment initiation (months)

Individual plot: Survival dynamic predictions

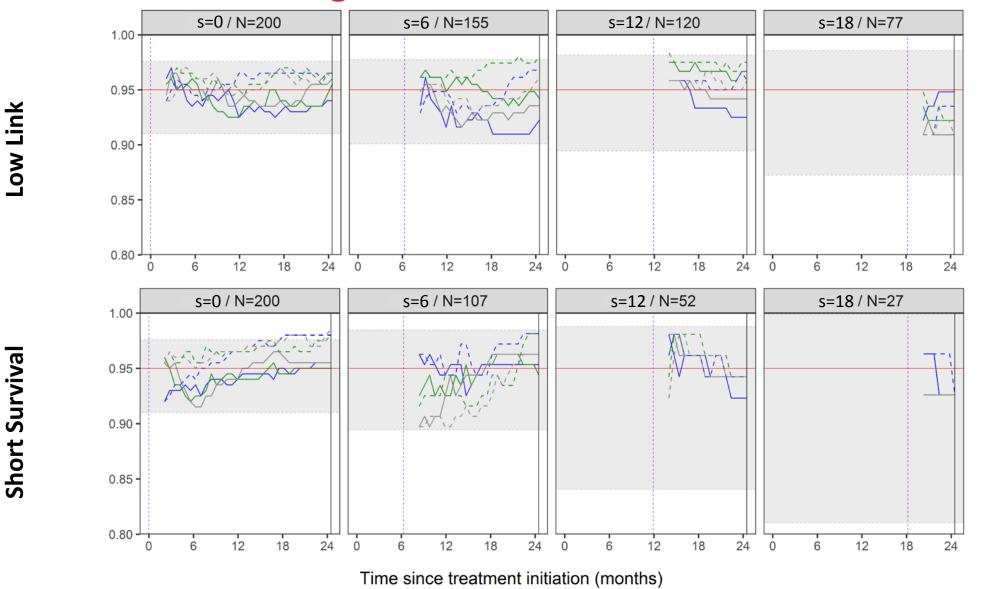


High Link scenario coverage rate





Other scenarios coverage rate



→ Good coverage with all software and for the different scenarios

Relative computation time (1 unit = 20 seconds)

Cofficience	Landmark time s			
Software	0	6	12	18
Stan(2.18.0)	1.0	2.9	4 .0	4.1
Monolix2018R2®	13.3	16.8	15.5	24.6
NONMEM7.4®	6.8	11.1	16.3	23.7

Computation times: Stan(2.18.0) << Monolix2018R2[®] ≈ NONMEM7.4[®]

Discussion

Comparable individual dynamic predictions using Stan(2.18.0), Monolix2018R2[®] and NONMEM7.4[®]

- Validation of the use of MH implemented in Monolix2018R2[®] and NONMEM7.4[®] to generate individual dynamic predictions
- Same results for the different scenarios: High Link, Low Link and Short Survival
- Stan much faster than the other

- Limitations:
 - Uncertainty on population parameters not taken into account
 - Only analytical solution for PSA
 - > ODE will be more efficient to describe PSA evolution over time
 - > ODE solvers could be different between each software \rightarrow Same results ?

Discussion

Software handling:

- Stan(2.18.0) is flexible and allows full Bayesian estimation
- Monolix2018R2[®] is the easiest to use for someone without modeling knowledge
- **NONMEM7.4**[®] is the most popular for nonlinear mixed effect modeling

Acknowledgments

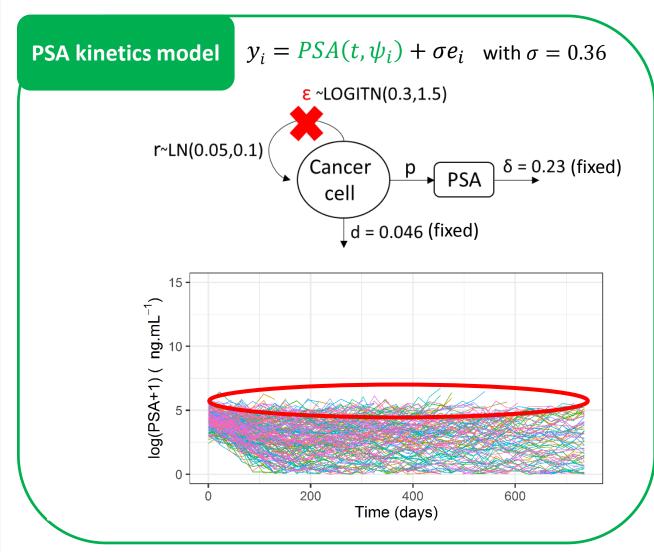
- Grant: Sanofi
- To my PhD supervisor
 - France Mentre
 - Julie Bertrand
- To my INSERM colleagues
- Robert Bauer, ICON

Infection • Antimicrobials • Modelling • Evolution

BACK-UP

Simulation study design

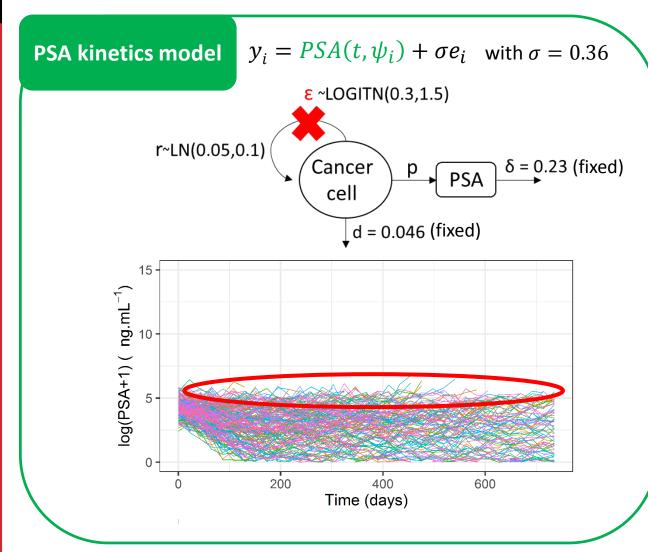
Desmee et al. AAPS Journal article about Joint Modelling of prostate cancer antigen (PSA) and overall surival



Survival model	h_0 : Weibull		
$h_{i,l}(t PSA(t,\psi_i)) = \frac{k}{\lambda} \times \left(\frac{t}{\lambda}\right)^{k-1} \times e^{\beta \times PSA(t,\psi_i)}$			
Survival Parameters	Low Link	High Link	Short Survival
λ (days)	765	2150	560
k		1.5	
β	0.005	0.02	0.02
Survival at the end of the study (%)	25	40	5
	<u> </u>		

Simulation study design

Desmee et al. AAPS Journal article about Joint Modelling of prostate cancer antigen (PSA) and overall surival



Survival model $h_{0}: \text{Weibull}$ $h_{i,l}(t PSA(t,\psi_{i})) = \frac{k}{\lambda} \times \left(\frac{t}{\lambda}\right)^{k-1} \times e^{\beta \times PSA(t,\psi_{i})}$			
Survival Parameters	Low Link	High Link	Short Survival
λ (days)	765	2150	560
k		1.5	•
β	0.005	0.02	0.02
Survival at the end of the study (%)	25	40	5
	11		

Software settings

Stan(2.18.0)	Monolix2018R2 [®]	NONMEM7.4®
	Calibration	
Thinning : 1 iteration Warmup : 500 iterations Sampling : L iterations Chain : 1	$ ho_{mcmc} = 1$ $L_{mcmc} = 500$ Chain : 1	CTYPE = 0 NBURN = 500 NITER = 0 Chain = 1
		EONLY = 1 ISAMPLE = L
	Sampling of $\psi_{i,l}$	

 L iterations of the sampling phase (using true population, μ and ω ,as prior parameters)

L draws from the conditional distribution (using true population parameters, μ and ω , as fixed parameters)