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Joint modeling of longitudinal and survival data

Longitudinal data
• 𝑦𝑦𝑖𝑖: vector of longitudinal measurements (viral load, bacteria load, 

lymphocytes, pharmacokinetics, …)

Time-to-event data
• 𝑇𝑇𝑖𝑖: observed event time (toxicity, inefficiency, death, …)

• 𝛿𝛿𝑖𝑖: event indicator = �1
0

If event observed
If event not observed
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 To characterize the (non-linear) kinetics of a biomarker in presence of a time-to-event
 To characterize the impact of this kinetics on a time-to-event 
 Reduce bias on biomarker kinetics parameters and potentially those on survival parameters

Two objectives

• can be described by a nonlinear model



Nonlinear joint model
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2 submodels

 Longitudinal part – Nonlinear mixed-effects models (NLMEM):
Let 𝑦𝑦𝑖𝑖(𝑡𝑡) be the observed longitudinal data for patient i = {1, …, 𝑁𝑁} 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑓𝑓 𝑡𝑡,𝜓𝜓𝑖𝑖 + 𝜎𝜎𝑒𝑒𝑖𝑖(𝑡𝑡)

 𝑓𝑓: predictions of the model 

 𝜓𝜓𝑖𝑖 = 𝜇𝜇 × exp η𝑖𝑖 : individual parameters

 𝑒𝑒𝑖𝑖~N 0, 1 : residual errors

 Survival part – Hazard function h for patient i 

𝑆𝑆𝑖𝑖 𝑡𝑡|𝑓𝑓 𝑡𝑡,𝜓𝜓𝑖𝑖 = 𝑃𝑃(𝑇𝑇𝑖𝑖 ≥ 𝑡𝑡) = exp[−∫0
𝑡𝑡 ℎ𝑖𝑖 𝑡𝑡|𝑓𝑓 𝑡𝑡,𝜓𝜓𝑖𝑖 𝑑𝑑𝑑𝑑]

with ℎ𝑖𝑖 𝑡𝑡 𝑓𝑓 𝑡𝑡,𝜓𝜓𝑖𝑖 = h0(t) × exp(𝜷𝜷 × 𝑓𝑓 𝑡𝑡,𝜓𝜓𝑖𝑖 ) �ℎ(𝑡𝑡) = lim
𝛥𝛥𝛥𝛥→0

� P r(𝑡𝑡≤𝑇𝑇<𝑡𝑡+ 𝛥𝛥𝛥𝛥|𝑇𝑇 ≥𝑡𝑡
𝛥𝛥𝛥𝛥

Well characterize the association between biomarker kinetics and survival in order to perform dynamic predictions at 
the individual level and identify high-risk patients

with 𝜇𝜇 = 𝑣𝑣(𝜇𝜇1, … , 𝜇𝜇𝑞𝑞), Vector of fixed effects
𝜂𝜂𝑖𝑖 ~N(0,Ω), Vector of random effects
where Ω is the variance-covariance matrix of size 𝑞𝑞 × 𝑞𝑞
with diagonal elements {𝜔𝜔1², … ,𝜔𝜔𝑞𝑞²}



Individual dynamic predictions
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Rizopoulos (2011) Biometrics
Rizopoulos (2012) Joint Models for Longitudinal and Time-to-Event Data                 
Desmée et al. (2017) BMC Med Res Methodo

 Landmark time (𝑠𝑠): time of interest until which data are observed

 Predict
• 𝑦𝑦𝑖𝑖(𝑠𝑠 + 𝑡𝑡,𝑌𝑌𝑖𝑖 𝑠𝑠 ,𝜃𝜃)

the longitudinal biomarker predictions with 𝑌𝑌𝑖𝑖 𝑠𝑠 = 𝑦𝑦𝑖𝑖 𝑡𝑡 ; 0 ≤ 𝑡𝑡 ≤ 𝑠𝑠

• 𝑆𝑆𝑖𝑖 𝑠𝑠 + 𝑡𝑡 𝑠𝑠 = 𝑃𝑃(𝑇𝑇𝑖𝑖 > 𝑠𝑠 + 𝑡𝑡|𝑇𝑇𝑖𝑖 > 𝑠𝑠,𝑌𝑌𝑖𝑖 𝑠𝑠 , 𝜃𝜃)
the conditional survival probability with 𝑇𝑇𝑖𝑖: event time

• For 𝑙𝑙 = {1, … , 𝐿𝐿},  𝐿𝐿 being the number of Monte Carlo samples
 Draw 𝜓𝜓𝑖𝑖,𝑙𝑙~ 𝜓𝜓𝑖𝑖 𝑇𝑇𝑖𝑖 > 𝑠𝑠,𝑌𝑌

𝑖𝑖
𝑠𝑠 , 𝜃𝜃}

 Compute 𝑦𝑦𝑖𝑖,𝑙𝑙(𝑠𝑠 + 𝑡𝑡) and  𝑆𝑆𝑖𝑖,𝑙𝑙 𝑠𝑠 + 𝑡𝑡 𝑠𝑠

 �𝑦𝑦𝑖𝑖 𝑠𝑠 + 𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦𝑖𝑖,𝑙𝑙 𝑠𝑠 + 𝑡𝑡 l=1,…,L and �CI0.95

 �𝑆𝑆𝑖𝑖 𝑠𝑠 + 𝑡𝑡 𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑖𝑖,𝑙𝑙 𝑠𝑠 + 𝑡𝑡 𝑠𝑠 l=1,…,L and �CI0.95

 True joint model is known
 Population parameters 𝜃𝜃 used as priors

95%
 credibility

interval
95%

 credibility
interval

with �CI0.95 : 95% credibility interval

 Horizon time (𝑡𝑡ℎ𝑧𝑧): time of predictions where 𝑡𝑡 = 𝑠𝑠 + 𝑡𝑡ℎ𝑧𝑧 with 𝑡𝑡ℎ𝑧𝑧 > 0
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Estimation methods for non linear joint model

 Markov Chain Monte Carlo (MCMC) Algorithms

• Metropolis-Hastings (MH)[1]

o Iterative using proposal distributions  

o Convergence, based on likelihood, to conditional distribution of 𝜓𝜓𝑖𝑖

o Sampling of high-dimensional distributions less efficient in practice

[3] Hoffman & Gelman (2014) Journal of Machine Learning Research
[4] https://mc-stan.org/

[5] Lavielle & Riba (2016) Pharm Res
[6] Sheiner (1980) J Pharmacokinet Biopharm.
[7] Lavielle (2007) J Pharmacokinet Pharmacodyn.

[1] Lavielle (2014) Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools
[2] Neal et al. (2011) MCMC using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo

• Hamiltonian Monte Carlo (HMC)[2]

o Operating on the same principle as MH but

o Convergence, based on likelihood and the gradient of 
this likelihood, to posterior distribution of 𝜓𝜓𝑖𝑖
 Less iterations than MH
 Each iteration is more time consuming  

 Implementation in several modeling software

• No-U-Turn Sampler (NUTS), a more efficient variant of HMC, since 2014[3]:
 Stan(2.18.0)[4]: a programming language used for Bayesian statistical modeling

• MH since 2016[5]: 
 NONMEM7.4®[6]: the most popular software for NLMEM in population pharmacokinetics and 
pharmacodynamics (PK/PD), developed at the University of California, San Francisco in the late 1970s
Monolix2018R2®[7]:  a software developed for NLMEM in population PK/PD, developed at INRIA in 2005   

https://mc-stan.org/


Aim of the study
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[1] Desmée et al. (2017) BMC Med Res Methodo

To compare the abilities of:

 Stan(2.18.0) (already validated by Desmée et al.[1])

 Monolix2018R2®

 NONMEM7.4®

to perform Bayesian individual dynamic predictions of biomarker kinetics 

and risk of death, with uncertainty, using simulated data



Simulation study design

7

 Inspired by Desmée et al. (AAPS Journal, 2015) about joint modeling of prostate cancer antigen (PSA) as longitudinal 
data and overall survival as risk of event

 One data set of Nsim = 200 patients

 Follow-up: Tend = 735 days (≈ 2 years) and biomarker measurements every 3 weeks
 No missing data

 Censoring: Administrative censoring at the end of the study
 𝑇𝑇𝑖𝑖 = min 𝑇𝑇 ∗𝑖𝑖 , Tend

 No competing risk event

 Landmark time s = {0, 6, 12, 18} months

 Monte Carlo samples: 𝐿𝐿=200 

PSA kinetics model 𝑦𝑦𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜓𝜓𝑖𝑖 + 𝜎𝜎𝑒𝑒𝑖𝑖

Desmee et al. (2015) AAPS Journal

with 𝜎𝜎 = 0.36 Survival model 

ℎ𝑖𝑖,𝑙𝑙 𝑡𝑡|𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜓𝜓𝑖𝑖 = 𝑘𝑘
𝜆𝜆

× 𝑡𝑡
𝜆𝜆

𝑘𝑘−1
× 𝑒𝑒𝛽𝛽×𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜓𝜓𝑖𝑖

ℎ0: Weibull

Survival Parameters Low Link High Link Short 
Survival

λ (days) 765 2150 560
k 1.5
β 0.005 0.02 0.02

Survival at the end of 
the study (%) 25 40 5

Survival Parameters Low Link High Link Short 
Survival

λ (days) 765 2150 560
k 1.5
β 0.005 0.02 0.02

Survival at the end of 
the study (%) 25 40 5

(fixed)

(fixed)
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 Accuracy and Precision on individual parameters, L = 200 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖,𝑙𝑙 per patient i

• 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖,𝑙𝑙 = 𝜓𝜓𝑖𝑖
∗−�𝜓𝜓𝑖𝑖,𝑙𝑙
𝜓𝜓𝑖𝑖

∗ , Relative estimation errors

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑖𝑖(%) = 100 × 1
𝐿𝐿

× ∑𝑙𝑙=1𝐿𝐿 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖,𝑙𝑙

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖 % = 100 × 1
𝐿𝐿

× ∑𝑙𝑙=1𝐿𝐿 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖,𝑙𝑙2

 Individual dynamic prediction plots

• PSA: �𝑦𝑦𝑖𝑖 𝑠𝑠 + 𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦𝑖𝑖,𝑙𝑙 𝑠𝑠 + 𝑡𝑡 l=1,…,L and �CI0.95

• Survival: �𝑆𝑆𝑖𝑖 𝑠𝑠 + 𝑡𝑡 𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑖𝑖,𝑙𝑙 𝑠𝑠 + 𝑡𝑡 𝑠𝑠 l=1,…,L and �CI0.95

 Coverage rate

• PSA: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠 + 𝑡𝑡|𝑠𝑠 = 1
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

∑𝑖𝑖=1
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡, 𝜓𝜓𝑖𝑖

∗ ∈�CI0.95

• Survival: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠 + 𝑡𝑡|𝑠𝑠 = 1
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

∑𝑖𝑖=1
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼 𝑆𝑆 𝑡𝑡, 𝜓𝜓𝑖𝑖

∗ ∈�CI0.95

Evaluation at each landmark

𝜓𝜓𝑖𝑖∗: Simulated i parameter
�𝜓𝜓𝑖𝑖,𝑙𝑙: Estimated i parameter

�CI0.95
�CI0.95

s=0

PI95%: 95% prediction interval around 0.95

s=0



Software settings

9

Sampling of ψ𝑖𝑖,𝑙𝑙

Monolix2018R2®Stan(2.18.0)

Warmup: 500 iterations
Chain : 1

 L draws from the conditional distribution 
using true population parameters, μ and ω, as fixed parameters

 L iterations of the sampling phase
using true population parameters, μ and ω,

as prior parameters

NONMEM7.4®

Calibration to reach the target distribution

ρmcmc = 1
Lmcmc = 500
Chain: 1

CTYPE = 0 
NBURN = 500
NITER = 0
Chain = 1 

EONLY = 1
ISAMPLE = L 

Calibration to obtain L ψ𝑖𝑖,𝑙𝑙

Thinning: 1 iteration
Sampling: L iterations Simulated parameters per individual: L



High Link scenario data
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Individual parameters 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑖𝑖(%)
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 Low bias on PSA kinetic parameters in early landmarks to be corrected as data are accumulated

 Similar results with all software

r PSA0

ɛ Tesc

s=0 s=6 s=12 s=18 s=0 s=6 s=12 s=18

s=0 s=6 s=12 s=18 s=0 s=6 s=12 s=18



Individual parameters 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(%)
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 Parameters increase in precision as data are accumulated

 Similar results with all software

r PSA0

ɛ Tesc

s=0 s=6 s=12 s=18 s=0 s=6 s=12 s=18

s=0 s=6 s=12 s=18 s=0 s=6 s=12 s=18
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Individual plot: Survival dynamic predictions
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High Link scenario coverage rate
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PI95%: 95% prediction interval around 0.95
Stan
Monolix
NONMEM

PSA
Survival
Landmark time s

s=0 s=6 s=12 s=18



Other scenarios coverage rate

16

Lo
w

Li
nk

Sh
or

tS
ur

vi
va

l

 Good coverage with all software and for the different scenarios

s=0 s=6 s=12 s=18

s=0 s=6 s=12 s=18



Relative computation time (1 unit = 20 seconds)
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Software
Landmark time s

0 6 12 18

Stan(2.18.0) 1.0 2.9 4 .0 4.1

Monolix2018R2® 13.3 16.8 15.5 24.6

NONMEM7.4® 6.8 11.1 16.3 23.7

 Computation times: Stan(2.18.0) << Monolix2018R2® ≈ NONMEM7.4®
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Discussion

 Comparable individual dynamic predictions using Stan(2.18.0), Monolix2018R2® and NONMEM7.4®
 Validation of the use of MH implemented in Monolix2018R2® and NONMEM7.4® to generate individual 

dynamic predictions

 Same results for the different scenarios: High Link, Low Link and Short Survival 

 Stan much faster than the other

 Limitations: 

 Uncertainty on population parameters not taken into account 

 Only analytical solution for PSA 

 ODE will be more efficient to describe PSA evolution over time

 ODE solvers could be different between each software  Same results ? 
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Discussion

 Software handling: 

 Stan(2.18.0) is flexible and allows full Bayesian estimation

 Monolix2018R2® is the easiest to use for someone without modeling knowledge

 NONMEM7.4® is the most popular for nonlinear mixed effect modeling
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 Desmee et al. AAPS Journal article about Joint Modelling of prostate cancer antigen (PSA) and overall surival

 Nsim = 200 patients

 Follow-up: Tend = 735 days (≈ 2 years) and biomarker measurements every 3 weeks No missing data

 Censoring: Administrative censoring at the end of the study 𝑇𝑇𝑖𝑖 = min(𝑇𝑇 ∗𝑖𝑖 , Tend), No competing risk event

 Landmark time s = {M0, M6, M12, M18}

PSA kinetics model 𝑦𝑦𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜓𝜓𝑖𝑖 + 𝜎𝜎𝑒𝑒𝑖𝑖

Desmee et al. (2015) AAPS Journal

with 𝜎𝜎 = 0.36 Survival model 

ℎ𝑖𝑖,𝑙𝑙 𝑡𝑡|𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜓𝜓𝑖𝑖 = 𝑘𝑘
𝜆𝜆

× 𝑡𝑡
𝜆𝜆

𝑘𝑘−1
× 𝑒𝑒𝛽𝛽×𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜓𝜓𝑖𝑖

ℎ0: Weibull

Survival Parameters Low Link High Link Short 
Survival

λ (days) 765 2150 560
k 1.5
β 0.005 0.02 0.02

Survival at the end of 
the study (%) 25 40 5

Survival Parameters Low Link High Link Short 
Survival

λ (days) 765 2150 560
k 1.5
β 0.005 0.02 0.02

Survival at the end of 
the study (%) 25 40 5

(fixed)

(fixed)
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Survival Parameters Low Link High Link Short 
Survival

λ (days) 765 2150 560
k 1.5
β 0.005 0.02 0.02
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the study (%) 25 40 5
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Sampling of ψ𝑖𝑖,𝑙𝑙

Monolix2018R2®Stan(2.18.0)

Thinning : 1 iteration
Warmup : 500 iterations
Sampling : L iterations
Chain : 1

L draws from the conditional distribution 
(using true population parameters, μ and ω, as fixed parameters)

L iterations of the sampling phase
(using true population, 

μ and ω ,as prior parameters)

NONMEM7.4®

Calibration

ρmcmc = 1
Lmcmc = 500
Chain : 1

CTYPE = 0 
NBURN = 500
NITER = 0
Chain = 1 
------------------
EONLY = 1
ISAMPLE = L 
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