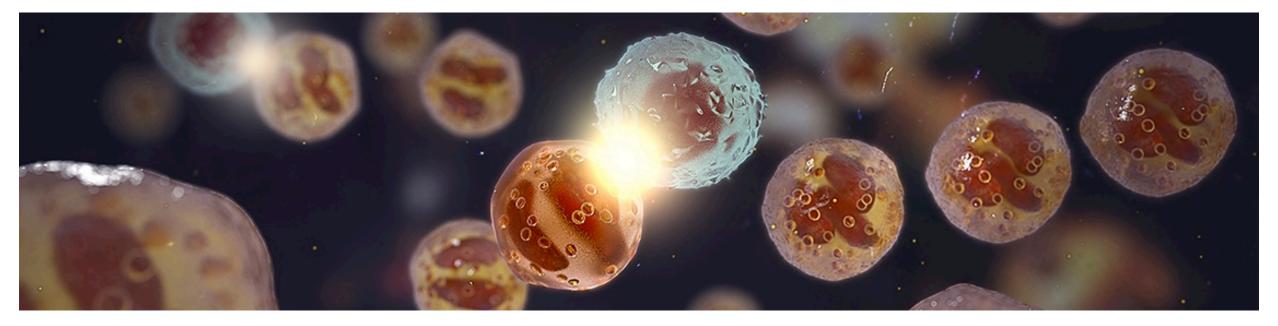
Calibrated predictions of survival based on tumor size dynamics and new lesions in lung cancer via Joint Modeling approach

Katsuomi Ichikawa, PhD

Clinical Pharmacology & Drug Safety and Metabolism Science & Data Technology Division, R&D Japan AstraZeneca

August 19th, 2019



Executive Summary

- In oncology, integration of multiple data sources can contribute to:
 - ✓ better prediction for important clinical outcomes
 - \checkmark earlier decision making both on trial and individual level

- A statistical basis has been developed and validated to model:
 - ✓ longitudinal response dynamics (Tumor size)
 - ✓ time-to-event (Survival)

(That is so called "joint model")

A problem with RECIST criteria

RECIST¹ data Time (Month) 2 8 12 4 6 cm 4 cm **Target Lesion** SLD²(cm) $2 \,\mathrm{cm}$ SD Nontarget Lesion SD³ SD SD X New Lesion PD⁵ Response \mathbf{PR}^4 PR PR

1. Response Evaluation Criteria In Solid Tumors

- 2. Sum of Longest Diameters of target lesions
- 3. Stable Disease
- 4. Partial Response
- 5. Progressive Disease

Reduction to Single Values

- Time to Progression : 12 months
- Best Overall Response : Partial Response
- Best Percent Change in SLD : 33.9%

Rich longitudinal tumor dynamic data are reduced to categorical endpoints with a subsequent loss of information

3

Ę

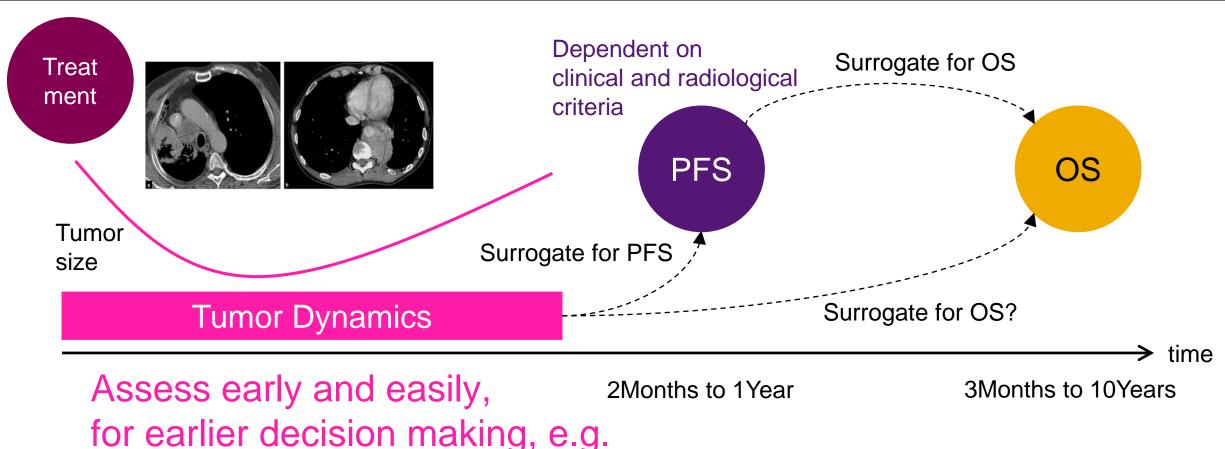
This work develops a joint model of disease progression

and survival (PFS/OS) that incorporates

- longitudinal tumor burden
- appearance of new lesions

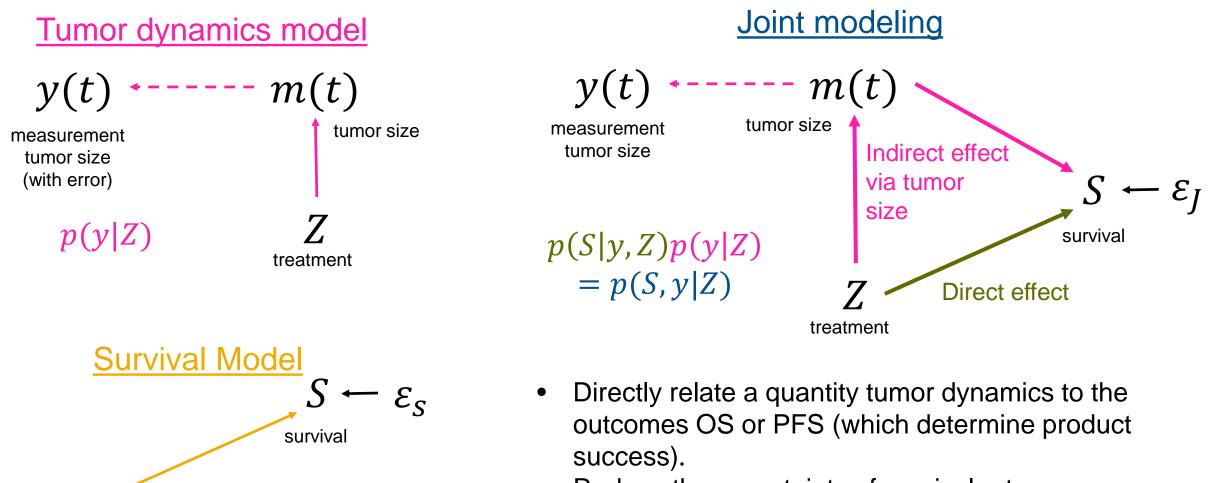
in NSCLC patients, to interrogate the components of RECIST and to predict survival.

Why monitor tumor growth dynamics ?



- Early clinical development stage: Decide which compound is better to go with?
- After market stage: Choose what treatment would be better for each patient?

What does Joint model look like?



- Reduce the uncertainty of survival rate.
 - $E[\varepsilon_s] > E[\varepsilon_J]$

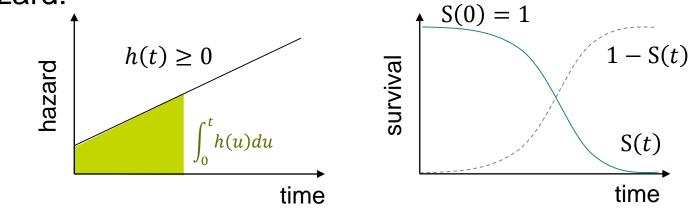
treatment

p(S|Z)

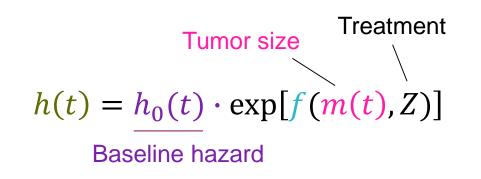
How to get tumor size being involved?

Relation between survival and hazard:

$$S(t) = \exp\left(-\int_0^t h(u)du\right)$$



Proportional hazard model:



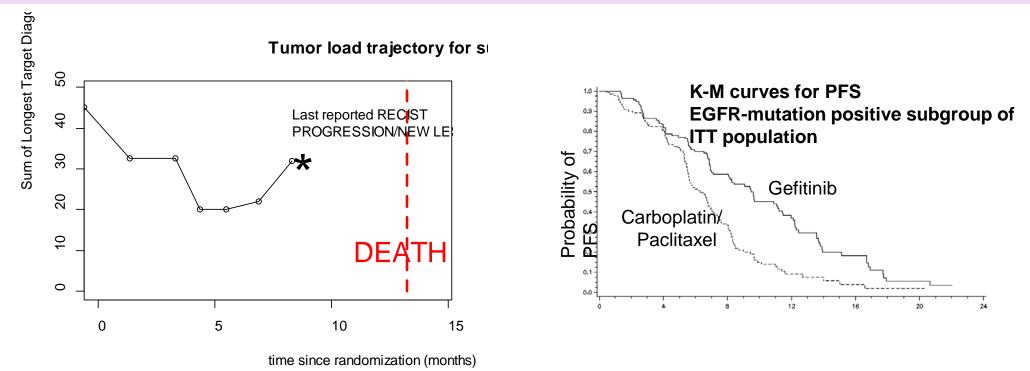
- Hazard is proportional to the baseline hazard
- The function *f* is a regressor function
- The tumor dynamics m(t) and the treatment Z are included in the proportional part inside the function f

Data from Iressa IPASS Study

Gefitinib (N=609) or Carboplatin + Paclitaxel (N=608)

Hazard ratio for progression or death

- Overall: 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001
- In EGFR-mutant (N=261): 0.48; 95% CI, 0.36 to 0.64
- In EGFR-wild type (N=176): 2.85; 95% CI, 2.05 to 3.98
- 174 subjects progressed due to the appearance of new lesions



Model

Ę

• Tumor measurement model

 $y_{ij} = m_i(t_{ij}) + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$

• Tumor dynamic model

$$m_i(t) = \beta_i t + sld_{0,i}e^{-\alpha_i t}, \qquad \frac{dm_i(t)}{dt} = \beta_i - \alpha_i sld_{0,i}e^{-\alpha_i t}$$

• Hazard for survival

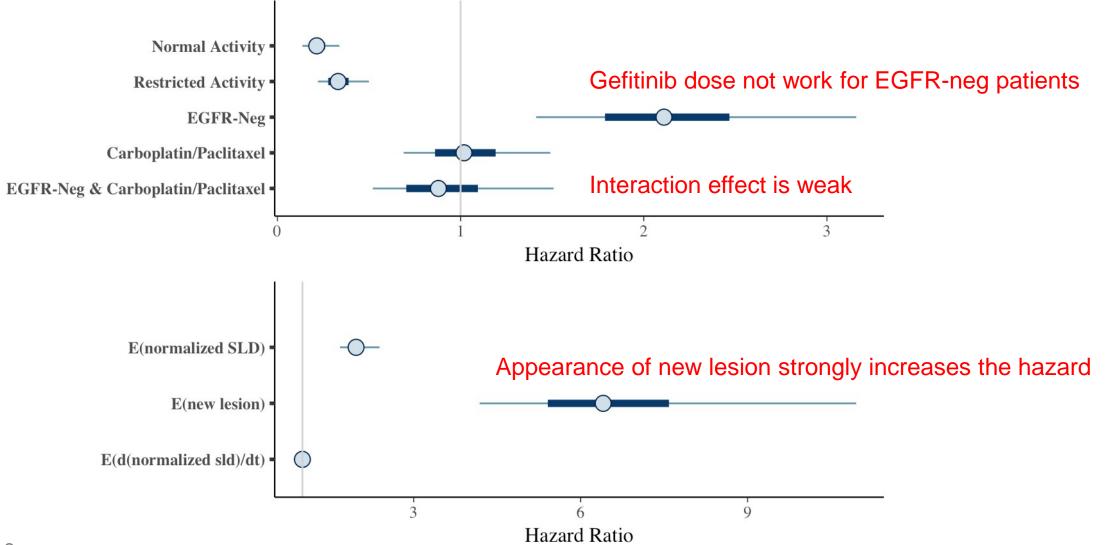
$$h_{i}(t|m_{i}) = h_{0}(t) \exp \left[\begin{array}{c} \boldsymbol{\gamma}^{\mathrm{T}} \boldsymbol{\omega}_{i} + \alpha_{l} l(t) + \alpha_{m} m_{i}(t) + \alpha_{m'} \frac{dm_{i}(t)}{dt} \\ Base line \\ \text{covariates} \end{array} \right]$$

$$\begin{array}{c} \text{New lesion} \\ \text{Appearance} \\ (0/1 \text{ value}) \end{array} \quad \text{Tumor size} \end{array}$$

$$\begin{array}{c} \text{Change in} \\ \text{tumor size} \end{array}$$

$$\begin{array}{c} \boldsymbol{\omega}_{i} = \begin{bmatrix} \omega_{i0} & \omega_{i1} & \omega_{i2} & \omega_{i3} & \omega_{i4} & \omega_{i5} \end{bmatrix} \\ \text{Intercept} & \begin{array}{c} \text{Normal} \\ \text{Activity} & \text{Activity} & \text{Negative} \\ \text{(0/1 value)} & (0/1 \text{ value}) \end{array} \right]$$

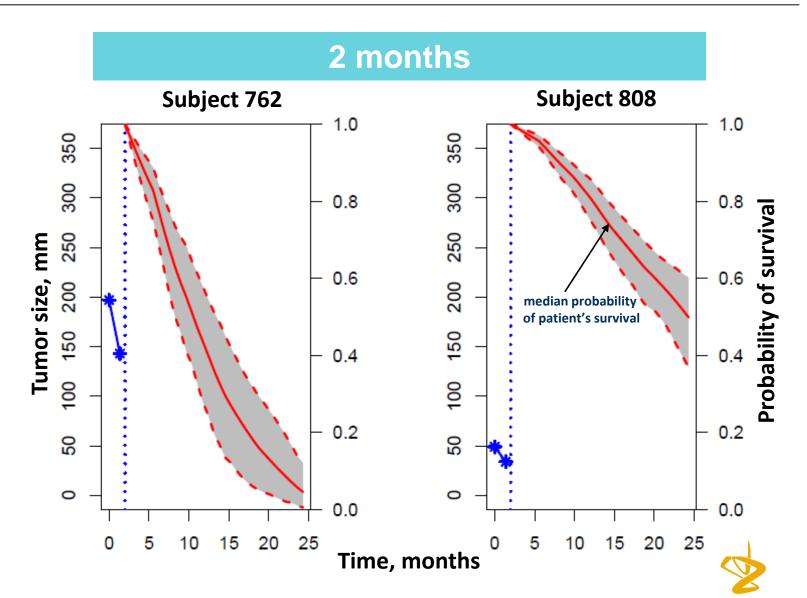
Selected result: Survival Model Coefficients



Ę

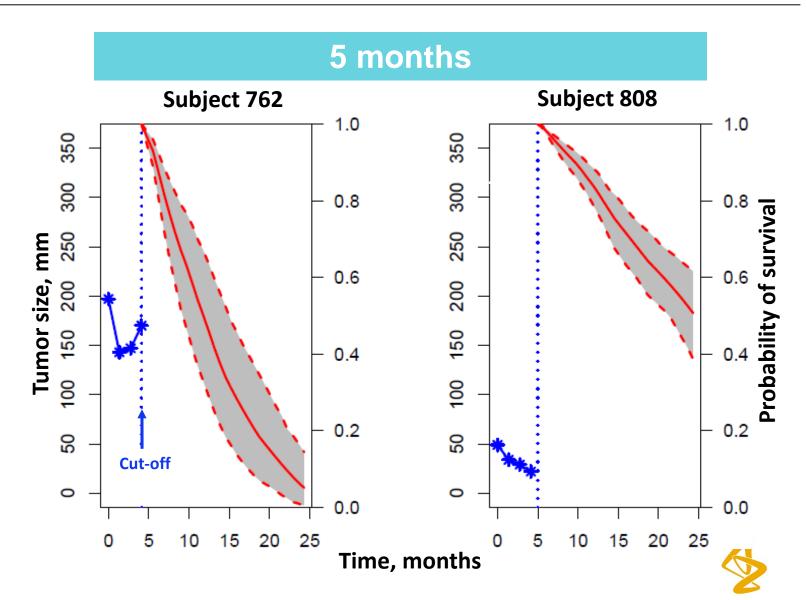
Simulation example, Gefitinib

 Consider 2 patients with same baseline covariates (same dosing, EGFR status, WHO performance status)



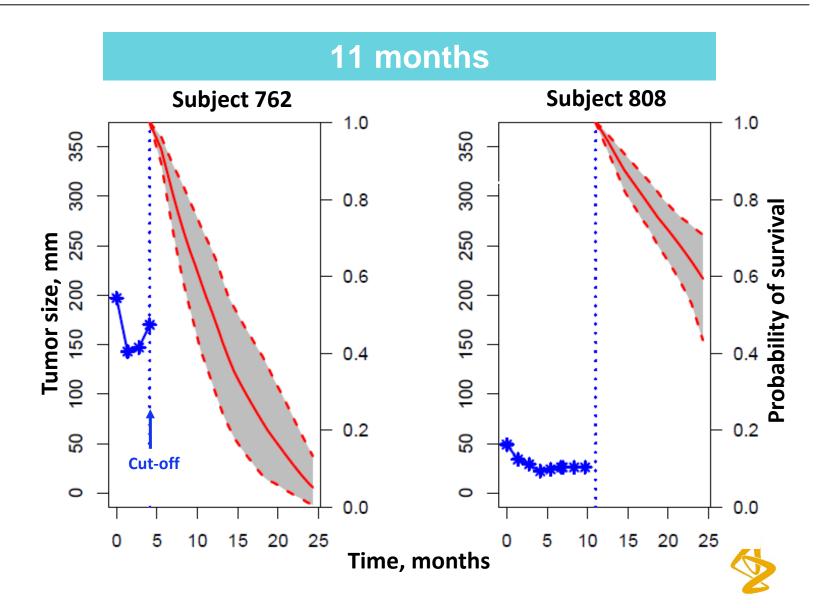
Simulation example, Gefitinib

 Consider 2 patients with same baseline covariates (same dosing, EGFR status, WHO performance status)



Simulation example, Gefitinib

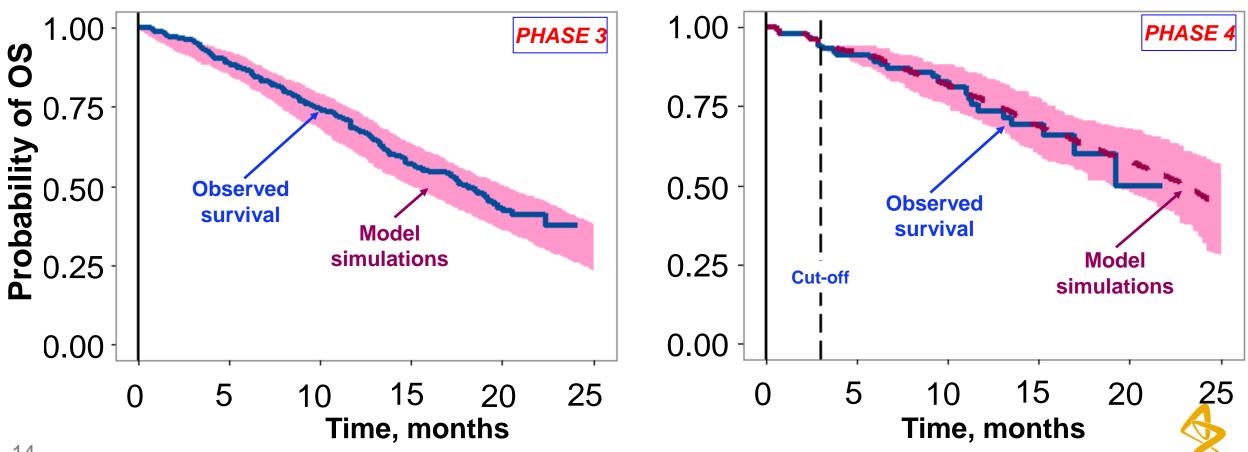
- Consider 2 patients with same baseline covariates (same dosing, EGFR status, WHO performance status)
- Their therapeutic prognoses differ only because of differences in tumor dynamics (baseline & trajectory)



Simulation example, Gefitinib (2 studies)

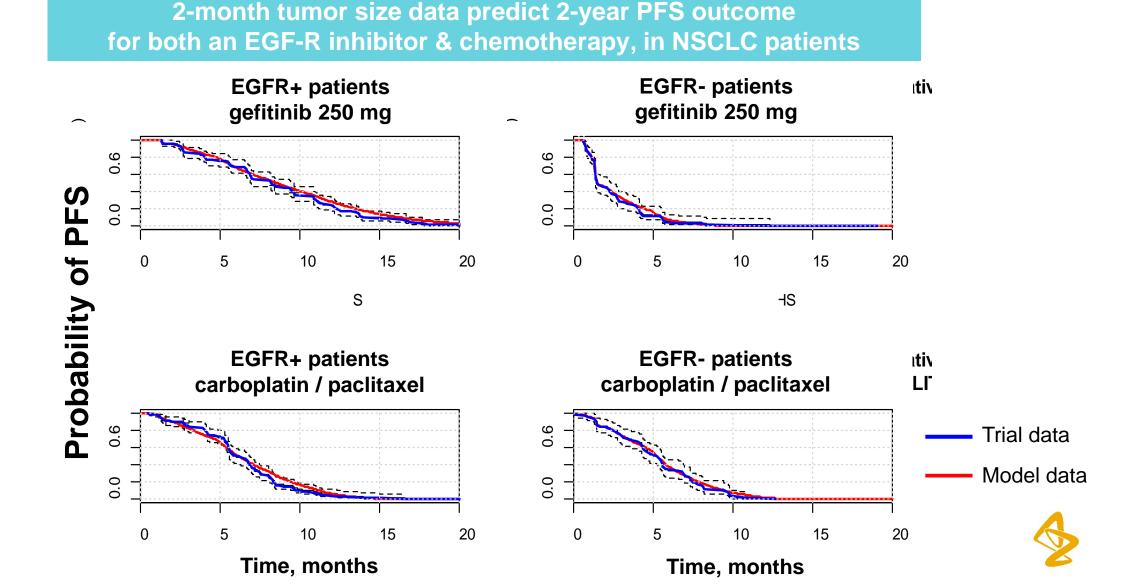
Joint model validated on IPASS data

Model predicts IFUM OS using 3-month data cut-off



Ę

Simulation example, Gefitinib and chemo.



Conclusion

- Successfully validated a statistical method
 - Development of joint models of tumor dynamics and survival can be used to predict survival based upon tumor dynamics in a new trial
 - Magnitude of contribution of tumour size to survival varied across drugs and EGFR mutation status
- It can contribute to:
 - ✓ making better clinical development strategy (Go/No-go decision)
 - ✓ delivering better treatment tailored for each patient
- Next Step:
 - \checkmark Evaluate how to broaden this approach across tumour types and drugs
 - Develop multivariate joint modeling (ctDNA, new lesions, individual lesion dynamics and other factors related to OS)

Acknowledge

Clinical Pharmacology and Safety Science, R&D BioPharmaceuticals, AstraZeneca, Boston, US

- Nidal Al-Huniti
- Mario Nagase
- Diansong Zhou
- Gabriel Helmlinger
- James Dunyak
- Amal Ayyoub (current affiliation: FDA)

Institute for Next Generation Healthcare, Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai.

• Jacqueline Buros-Novik

Back-up

Likelihood function for joint model

Maximize the joint distribution of "Survival time(S_i)" and "Tumor size(y_i)", and it can be divided into 3 parts, given "the tumor size model (m_i)", for patient *i*.

$$\prod_{i=1}^{n} p(S_i, \mathbf{y}_i) = \prod_{i=1}^{n} \int p(S_i, \mathbf{y}_i, m_i) dm_i = \prod_{i=1}^{n} \int p(S_i, \mathbf{y}_i | m_i) p(m_i) dm_i = \prod_{i=1}^{n} \int p(S_i | m_i) p(\mathbf{y}_i | m_i) p(m_i) dm_i$$

1.Survival model: (Proportional hazard model)

$$p(S_i|m_i) = (h_0(S_i) \cdot \exp[f(m_i(S_i), Z)])^{\Delta_i} \exp\left(-\int_0^{S_i} h_0(u) \cdot \exp[f(m_i(u), Z)] \, du\right)$$

where Δ_i is indicator variables $\Delta_i = 0$ means censored and $\Delta_i = 1$ means occurrence of an event

2.Tumor size model:

$$p(\mathbf{y}_i|m_i) = \prod_{j=1}^{n_i} p(y_{ij}|m_i)$$

3. Model variability: $p(m_i) = p(m_i|m)$

Numerical methods used

Part	Integrate out the inter individual tumor size model variability	Baseline hazard function	Integrate the hazard from 0 to survival time
	$\int * dm_i$	$h_0(t)$	$\int_0^{S_i} h(u) du$
Method	MCMC sampling	Cubic spline with 6 nots	Gauss-Konrad quadrature with 13 quadrature points
	 Using sampling instead of integration 	 Divide interval into 6 parts Approximate by 3rd order polynomial curve for each interval Connect them smoothly, up to 2nd order derivative to be equal 	 Standard numerical method for definite integral Weighted sum of function value at a certain argument points The argument points and weights are prespecified to be the most efficient for any functions

