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Motivation

4

Escalating costs of drug development creates sustainability challenge for 
pharmaceutical industry
Increasing efficiency is essential
A number of approaches have been pursued and/or are under 
consideration, e.g., adaptive designs, use of biomarkers, platform trials, 
risk-based monitoring, etc.
Most involve significant changes to drug development practice and 
processes
Will focus here on simple approaches to improve data analysis efficiency 
resulting in sample size reduction and/or increase in power
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Motivation (Cont.) 
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Longitudinal data are routinely collected in most clinical trials: endpoints 
measured at multiple visits, e.g., HbA1c, weight, lab results, etc.
Often analyses are focused on change from baseline, discarding observations 
between baseline and final visit

inefficient use of information
require imputation for last visit, if missing

Efficiency gains can result from utilizing all data collected in trial, but 
additional assumptions are required
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Chronic indication, pediatric phase III study
Study design: 

Randomized, double-blind, placebo-controlled, multi-center
Primary outcome: 

Continuous outcome (change in exercise capacity) 
Measured at baseline and 2 post-baseline time points (during therapy, end of 
therapy)

Primary analysis model: 
Linear mixed effects model for repeated measurements (MMRM): 

Models two post-baseline time points
Baseline measurement as covariate

Case Study: Background
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Fixed sample size design
Based on t-test, known to be conservative, but traditionally used for sample size 
calculation
High uncertainty about assumptions (variability, within-subject correlations), 
based on only one observational study

Agency requested to have a sample size re-estimation at 90% of the initially 
planned enrollment
Design with sample size re-estimation
1) Calculate initial sample size
2) Estimate unknown variability at a pre-specified time point during the study
3) Increase sample size if the variability is higher than assumed. Final sample size

should not be lower than initial sample size (restricted design)
should not be higher than upper bound

Sample size planning
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Initial planning & agency‘s request



Initial sample size based on t-test was already large
Increasing sample size would be challenging

hard to recruit population
the study should be completed within a specific timeframe

Initial sample size and re-estimation method:
No need for conservative initial sample size planning (i.e., t-test)
Non-conservative initial sample size planning, i.e. 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 180 ≠ 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 220

Use powerful method for sample size re-calculation (ANCOVA, MMRM)
using observed (i) correlations, (ii) variance, (iii) missing value rate 

Implement maximum sample size based on feasibility

Initial sample size and re-estimation approach
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Fixed sample size vs. sample size re-estimation: Simulation Results
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Setting with missing values (𝑝𝑝𝑤𝑤𝑤𝑤 = 10%, 𝑝𝑝𝑤𝑤𝑤𝑤 = 20%)

Variability Variability

a) Power b) Expected sample size & variability



Evaluation of analysis methods and corresponding sample sizes is an important 
step
Making assumptions based on available information is a part of design planning
Taking time to evaluate and simulate designs might save substantial amount of 
time during negotiation with regulators and study conduct 
Trying to change a design or strategy during a discussion with regulators might be 
problematic

Initial sample size and re-estimation: discussion
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Another example of longitudinal data: ALS disease
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Parametric longitudinal models
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Longitudinal data collected on same subject often correlated and with non-
constant variance: require specialized analysis methods
Assume specific profiles for observed response over time, with functional 
specification: e.g. linear change over time, monotonic increase converging to 
an asymptote (such as Emax model)
Number of parameters to estimate is fixed, independent of number of time 
points observed: e.g., intercept and slope for linear model
Assumed profile typically derived from historical data, based on biological or 
physiological knowledge, earlier studies, literature
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MMRM longitudinal models
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Mixed-Effects Model for Repeated Measures (MMRM) is commonly used to 
analyze longitudinal data with missing observations (no need for imputations)

Fixed effects representing visits and treatment are as in ANCOVA models: 
no assumptions required on time profile shape
Flexible, but no substantial improvement in “analysis efficiency” (as 
measured by precision of estimates and power of hypothesis tests) vs. 
change from baseline analyses (in fact can have identical properties, in no-
missing data case)
Main motivation is providing valid analysis of data with missing visits (under 
MAR)
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Parametric longitudinal models
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Parametric model assumed for time profile: e.g., linear decrease in time for 
ALSFRS endpoint

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑡𝑡𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖
Subject-specific parameters are decomposed into fixed and random effects: 
𝛼𝛼𝑖𝑖 = α + 𝑎𝑎𝑖𝑖 ,𝛽𝛽𝑖𝑖 = 𝛽𝛽 + 𝑏𝑏𝑖𝑖
Treatment effects tested using fixed effects – e.g., 𝛽𝛽
Only two fixed effects per arm needed in linear parametric model, irrespective 
of number of visits
MMRM model: #visits x #arms fixed effects – same precision/power as 
change from baseline in ALS example (when no missing data)
Parametric longitudinal models can produce substantial gains, at the price of 
more assumptions
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Longitudinal model efficiency gains
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Parametric longitudinal modeling

Efficiency gains
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Efficiency gain: increase in sample size needed under change from 
baseline/MMRM approach for same power as linear mixed model approach
Increases with number of visits and decreases with variance of slope random 
effect
Parametric longitudinal modeling would lead to increased power for same N, 
or reduced N for same power – does not require change in design
Even for moderate number of visits, say 4, could get reductions in sample 
size around 10% 
Additional assumptions needed in trial design and analysis of results



Concluding remarks
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Parametric modeling of longitudinal data can produce substantial analysis 
efficiency gains, at the price of additional assumptions

Requires more assumptions and complex methodology than more traditional approaches 
(e.g., MMRM), but potential benefits justify its routine consideration
Not always leading to significant improvements: careful evaluation, often involving 
simulations and considering various scenarios, is essential

Parametric longitudinal modeling is underused in clinical drug development, 
especially in confirmatory studies
Worthwhile in learning trials, needs consultation and buy-in from regulators in 
studies intended to serve for registration 
Useful for interim decision making (e.g., futility rule, adaptation) in learning 
and confirmatory trials



Concluding remarks (Cont.)
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Increasing interest in modeling and simulation (e.g., MIDD and CID goals 
in PDUFA VI) creates opportunities for discussions with regulators on 
qualification and acceptance of parametric longitudinal modeling 
approaches.
Ongoing discussions on potential MIDD ICH topic may open door for 
opportunities at global stage.
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