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Pharmacometrics research group 
in Uppsala, Sweden
• "We develop and use mathematical models to 

understand drug and disease mechanisms, and to 
optimise drug development and therapy."

http://www.farmbio.uu.se/forskning/researchgroups/farmakometri/

http://www.farmbio.uu.se/forskning/researchgroups/farmakometri/


What is a Pharmacometric 
model?

Drug
Therapy

Side-effect

Effect

BiomarkerPlasma
Conc.

Pharmacokinetics (PK)

Pharmacodynamics (PD)

-Biological model basis
-Time-courses
-Simultaneous analysis of all data



Pharmacometric models are usually 
nonlinear mixed-effect models (NLMEs)

• !"# The ith individual’s jth observation.
• $() A model that describes all observations
• (⃗ Typical individual parameter values
• )⃗" The ith individual’s deviations from (⃗
• Ω Covariance matrix for )⃗"
• +⃗"# Residual error components for !"#
• Σ Covariance matrix for +⃗"#
• (other levels of variability, covariates, …)

!"# = $ (⃗, )⃗" + ℎ (⃗, )⃗", +⃗"#



What can a pharmacometric 
model be used for?
• characterize the longitudinal dose-exposure-

response (DER) relationships
- identifying drug effects
- selection of efficacious doses
- understanding and characterizing other aspects of a 

pharmaceutical compound, for example, drug-drug 
interactions.

- planning and optimizing new trials
- Integral part of the decision-making process in drug 

development and usage.



Advantages of pharmacometric 
approaches
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Advantages of model based 
optimal design of experiments

Model-Based Analysis
(Default Design)

Traditional Analysis
(Unstructured MMRM model,
LSMeans)

1892 (3.6 X)

1443 (2.2 X)

Model-Based Analysis
(Optimized for power)

(Optimized) Model-Based vs. 
Traditional Data Analysis in Alzheimer's

• Hooker et al., Model-based Trial Optimization for Phase II and III designs in Alzheimer's Disease, ACOP, 2011
• Ueckert et al., Optimizing disease progression study designs for drug effect discrimination, JPKPD, 2013

7



Potential problems with a model 
based approach

• Estimation: building models on measured data can 
lead to bias.

• Simulation (decision making) / optimization: using a 
misspecified model may give poor information / 
poor designs



Non-longitudinal approaches

• Why use them?
- Fast
- Avoid some of the model building problems of 

longitudinal models
- When you can’t make the measurements

• When they do not make sense:
- Non-uniform censoring (LOCF = bad!)
- Time-varying covariates
- Lower power if the longitudinal model is known or can 

be derived/built
- Unclear when to stop the study



General principles

• Use population pharmacometric models for 
longitudinal data (nonlinear mixed effects models)

• Avoid/reduce model building or build in smart ways 
to avoid problems of potential model bias

- pre-specified models, model averaging

• Design studies based on these principles
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Where can NLME make a 
difference, and already 
accepted/being 
investigated by regulatory?



Dose finding (Phase IIb)



Problem: Inadequate dose and 
regimen selection for pharmaceutical 
products

• High attrition rates in phase III (Kola 2004, Burock
2014, Freidlin 2008, Kaitin 2011)

- Partly due to lack of proper dose selection 
- General lack of understanding of pharmacology

• Post-marketing study commitments and changes to 
dosing recommendations (Onakpoya 2016)
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Standard method for dose selection: 
pairwise comparisons  

• Choose the smallest tested 
dose that satisfies both 
criteria below or “stop”.

• Criterion 1: p-value of 
pairwise ANOVA of active 
arm and placebo arm is less 
than X.

• Criterion 2: average of the 
placebo-baseline adjusted 
effect is greater than Y.



Problems with pairwise 
comparisons  

• Study needs to be 
powered for multiple 
comparisons (Senn 2007)

• Dose-response (DR) 
instead of longitudinal 
dose-exposure-
response (DER)
• Interpolation to other, 

more beneficial doses?
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Advanced Methods for Dose and Regimen Finding
During Drug Development: Summary of the EMA/EFPIA
Workshop on Dose Finding (London 4–5 December 2014)
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R Hemmings16 and I Skottheim Rusten1,21

Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as
illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory
institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and
usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration
with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose
finding (London 4–5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators
were presented. These methods are described in the present report: they include five advanced methods for data analysis
(empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP-Mod, and model
averaging) and three methods for study design optimization (Fisher information matrix (FIM)-based methods, clinical trial
simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for
historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their
implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the
workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and
should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well-designed dose-
finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend
a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they
should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418–429; doi:10.1002/psp4.12196; published online 0 Month 2017.

In order to receive marketing authorization (MA) and to be
maintained on the market, new drug candidates need to
demonstrate good evidence of efficacy and safety in the
sought indication. Adequately powered phase III random-
ized controlled trials (RCTs) where the new drug candidate
is tested against placebo or an active comparator is the
gold standard for confirmation of efficacy and safety.
Although it is logical to assume that medicinal products that
advance to phase III trials are adequately characterized in
terms of pharmacokinetics (PK), pharmacodynamics (PD),
and the efficacy and safety profile in earlier stages of drug
development, the high attrition rate in phase III does not
support this.1 One of the contributing factors to this high
attrition rate is inadequate dose and regimen selection and,
more generally, the insufficient understanding of the phar-
macology to design an optimal phase III program.2–4 Even

successful phase III trials and regulatory labeling may not
include the optimal dose and regimen, especially for special
populations such as the elderly and pediatrics, as shown in
postmarketing commitments (Post Authorisation Efficacy
Studies, (PAES); Post Authorisation Safety Studies (PASS))
and through subsequent changes to the dosing recommen-
dations postmarketing.5

The most commonly used method for defining the dosing
rationale (dose and dosing regimen) is the pairwise com-
parison of different doses with a common control (e.g., pla-
cebo), a method based on minimal assumptions which,
however, has known limitations in this context, including
reliance on P-values and the need for the dose ranging
studies to be powered for multiple comparisons.6 Further,
the exploratory development is often poorly conceived by
focusing on selecting the dose/regimen instead of

1EMA Modelling and Simulation Working Group, London, UK; 2Federal Agency for Medicines and Health Products, Brussels, Belgium; 3 UMR850 INSERM, Universit!e de
Limoges, Limoges, France; 4European Medicines Agency, London, UK; 5Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New
Zealand; 6AstraZeneca UK Limited, London, UK; 7Uppsala University, Uppsala, Sweden; 8Manchester University, Manchester, UK; 9Center for Medical Statistics,
Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria; 10Berry consultants, Austin, Texas, USA; 11Pfizer, London, UK; 12Novartis, London,
UK; 13 Leiden Academic Centre for Drug Research, Leiden, The Netherlands; 14Certara QSP, Canterbury, UK; 15University College London, London, UK; 16Medicines
and Healthcare Products Regulatory Agency, London, UK; 17Agenzia Italiana del Farmaco, Roma, Italy; 18Medical Products Agency, Uppsala, Sweden; 19Bundesinstitut
f€ur Arzneimittel und Medizinprodukte, Bonn, Germany; 20ABLYNX, Gent, Belgium; 21Norvegian Medicines Agency, Oslo, Norway. *Correspondence: F Musuamba
(Flora.MusuambaTshinanu@fagg-afmps.be)
Received 21 November 2016; accepted 27 March 2017; published online on 0 Month 2017. doi:10.1002/psp4.12196

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418–429; doi:10.1002/psp4.12196
VC 2017 ASCPT All rights reserved



Model based decision making in 
dose finding trials

• Choose doses based on 
the probability of 
achieving a target 
response (longitudinal 
population model 
based)
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Abstract Population model-based (pharmacometric)
approaches are widely used for the analyses of phase IIb

clinical trial data to increase the accuracy of the dose

selection for phase III clinical trials. On the other hand, if
the analysis is based on one selected model, model selec-

tion bias can potentially spoil the accuracy of the dose

selection process. In this paper, four methods that assume a
number of pre-defined model structure candidates, for

example a set of dose–response shape functions, and then

combine or select those candidate models are introduced.
The key hypothesis is that by combining both model

structure uncertainty and model parameter uncertainty

using these methodologies, we can make a more robust
model based dose selection decision at the end of a phase

IIb clinical trial. These methods are investigated using

realistic simulation studies based on the study protocol of
an actual phase IIb trial for an oral asthma drug candidate

(AZD1981). Based on the simulation study, it is demon-

strated that a bootstrap model selection method properly
avoids model selection bias and in most cases increases the

accuracy of the end of phase IIb decision. Thus, we rec-
ommend using this bootstrap model selection method when

conducting population model-based decision-making at the

end of phase IIb clinical trials.

Keywords Model averaging ! Model selection !
Pharmacometrics ! Phase IIb clinical trial ! Dose finding

study ! Mathematical modelling ! Dose–effect relationship

Introduction and background

Quantifying the probability of achieving the targeted effi-

cacy and safety response is crucial for go/no-go investment
decision-making in a drug development program. This is

particularly crucial when analyzing phase IIb (PhIIb) dose-

finding studies to select the phase III dose(s) given the
costs of phase III studies.

It has previously been shown that population model-

based (pharmacometric) approaches can drastically
increase the power to identify drug effects in clinical trial

data analysis compared to conventional statistical analysis

(e.g., [1]). On the other hand, the model-based approach
can be hindered by model selection bias if a single model

structure is assumed and used for the analysis (e.g., [2, 3]).
There have been several attempts through model averaging

and model selection to weaken the model structure

assumptions by considering multiple possible model can-
didates in the analysis [4–9].

In this paper, we introduce four methods that assume a

number of pre-defined model candidates and then combine
or select those candidate models in different ways to make

predictions and to account for uncertainty in those predic-

tions. The first method is ‘‘simple’’ model selection where a
set of model structures are pre-specified and a model is

Electronic supplementary material The online version of this
article (doi:10.1007/s10928-017-9550-0) contains supplementary
material, which is available to authorized users.
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• Aoki et al., PAGE, 2014
• Hooker et al., Workshop on dose finding 

and selection, EMA, 2014
• Aoki et al., PAGE, 2016
• Aoki et al., J. PKPD, 2017

• Simulation of drug effect on top of real 
baseline/placebo data for FEV1 endpoint (longitudinal 
population model)

• Multiple drug effect models and parameters used in 
simulations

• Compare
- Model averaging methods
- Pairwise comparisons
- Analysis with the simulation model



Numerical experiment 4: probability of achieving
target endpoint estimation accuracy

In the model averaging and selection methods investigated

here, the dose selection is based on the probability of

achieving the target endpoint, hence, accurate estimation of
this probability is crucial. In this experiment, we investi-

gate this probability estimation for each simulated dataset

from Simulation Studies 1–4 (when a drug effect is pre-
sent) in the following manner:

1. Select a predefined limit, p, for the probability of
achieving the target effect.

2. Allow any dose (any positive real number) to be

selected (not just the investigated dose levels) and
choose the dose that is estimated to achieve the target

endpoint with probability p using the proposed model-

based methods.
3. Repeat steps 1 and 2 for all 1200 simulated phase IIb

datasets and count the number of times a dose above

the theoretical minimum effective dose (tMED) is
selected, from which the empirical probability of

achieving the target effect is calculated.

4. Repeat steps 1–3 for p ¼ 0:01; 0:02; . . .; 0:99.

Note that if a method estimates the probability of

achieving the target endpoint without bias, then the selec-

ted doses should be above tMED with probability p.

Results

To concisely present the results for each of Numerical

Experiments 1, 3, and 4, we has combined the results of
Simulation Studies 1–4. Hence, for those experiments, the

results are based on 1200 PhIIb clinical trial simulations.

We refer the readers to the Appendix for a detailed dis-
cussion of the result for each simulation study. Further, the

uncertainty of the numerical experiments has been quan-
tified by randomly sampling trial simulations with

replacement (1200 trial simulations for Numerical Exper-

iments 1, 3, and 4, and 300 trial simulations for Numerical
Experiment 2) and repeated the numerical experiments. For

example, for Numerical Experiments 1, 3, and 4, 1200 trial

simulations were sampled with replacement 100 times to
produce 100 sets of the 1200 trial simulations. For each set

of trial simulations, the numerical experiments were

performed.

Numerical experiment 1: dose finding accuracy

The dose finding accuracy of the various investigated

methods is presented in Fig. 6. As can be seen, all the

model based methods could find the correct dose more

often than the statistical method used in the PhIIb
AZD1981 study protocol. In addition, we can see that

Methods 2 and 4 outperform Methods 1 and 3 and the

Single Model Based approach (using the simulation
model).

Numerical experiment 2: type-1 error control
accuracy

The Type-I error control of the various investigated
methods is presented in Fig. 7. As can be seen, Methods

1–4 control the type-I error accurately. Furthermore, we

can see that the LRT is necessary for Methods 1, 2, and 4 to
properly control the Type-1 error. Lastly, we see that the
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Fig. 6 Probability of finding the correct dose. The edges of the boxes
are 75th and 25th percentiles. The line in the box is the median and
the whiskers extend to the largest and the smallest value within
1.5*inter-quartile range. Dots are the outliers outside of the whiskers
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Fig. 7 Type-1 error rate, the probability of choosing either 10 mg,
40 mg, 100 mg, or 400 mg while there is no simulated drug effect.
The significance level of all the methods was set to 0.05 hence if the
Type-1 error is correctly controlled the Type-1 error rate should be at
5% (indicated by the horizontal line)
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Averaging techniques reduce selection bias

21

The	accuracy	of	
the	calculated	
probability:	If 
the probability of 
achieving the target 
endpoint is 
estimated 
without bias, the 
plot should lie on the 
line of identity (red 
straight line) 
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Summarize the simulations

Based on the computed likelihoodblij and the dose-endpoint
relationship hijðdoseÞ, we compute the probability of

achieving target endpoint versus dose relationship. In this
step, we need to choose a weighting scheme where models

are selected or averaged. We denote this weight function as

wj and it will depend on the likelihood blij and the structure

of the model (i.e., the number of model parameters). We
denote the weight of the ith bootstrap sample with Model j

as wij.

For the weights calculated based on AIC, we let wij to be

the following:

wij ¼ wjðblijÞ ¼ exp lnðblijÞ $ Nparaj

! "

where Npara j is the number of parameters of Model j.
For the weights calculated based on BIC, we let wij to be

the following:

wij ¼ wjðblijÞ ¼ exp lnðblijÞ $ Npara jlnðNobsÞ= 2
! "

:

where Nobs is the number of observations (total number of

FEV1 measurements in a dataset).

Using this weight function, we can define the probability
of achieving the target endpoint p ðdoseÞ as follows:

Method 1: model selection

p ðdoseÞ ¼
X

i¼ 0;...;Nbootstrap

1= ð1 þ NbootstrapÞ if hikðdoseÞ[TV
0 otherwise:

#

where k ¼ argmaxjðw0jÞ:

Method 2: model selection using bootstrap
maximum likelihood

p ðdoseÞ ¼
X

i¼ 0;...;Nbootstrap

1= ð1 þ NbootstrapÞ if hikiðdoseÞ[TV

0 otherwise

#

where ki ¼ argmaxjðwijÞ.

Method 3: model averaging

p ðdoseÞ ¼
X

i¼ 0;...;Nbootstrap j¼ 0;...;Nmodel

w0jP
j¼ 0;...;Nmodel w0j

if hijðdoseÞ[TV

0 otherwise:

8
<

:

Method 4: model averaging using bootstrap
maximum likelihood

p ðdoseÞ ¼
X

i¼ 0;...;Nbootstrap j¼ 0;...;Nmodel

wijP
j¼ 0;...;Nmodel

wij
if hijðdoseÞ[TV

0 otherwise:

8
<

:

Detailed analyses of numerical experiments

In this section, we investigate the numerical computational

results presented in the ‘‘Results’’ Section more in detail.

Effect of excluding the simulation model
from the set of candidate models

All the numerical experiments presented so far has the

simulation model (the model that was used to create a trial

simulation dataset) included as one of the candidate

●●

●

●

●

●
●

●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●

●●
●

●
●●

●
●●●

●●●●●
●

●●
●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●●
●●●

●●
●●

●
●

●
●●●

●
●●

●
●●●

●
●●

●
●

●●●●●
●

●
●

●●●●
●

●
●

●●●●
●

●
●●

●●
●●●●●

●●
●●●●

●
●●

●
●●●

●●
●●

●●
●●●●

●
●●

●
●

●
●

●
●

●●●
●

●

●●
●

●
●

●
●●

●
●

●●●
●●●

●●
●

●●
●●●●

●●●●●●●●
●

●●
●●●●●●

●●●●●●
●

●●●●●
●●

●
●●●●●●●●●●

●●●●●●●●
●●●●●

●●●
●●●●●●●●

●●
●

●
●

●
●

●
●

●

●●
●

●
●

●●
●

●
●●●

●●
●

●
●

●●
●

●
●●●●

●
●●

●●
●

●
●

●
●●

●
●

●●
●●

●
●

●●
●

●
●

●
●

●●
●●●

●
●

●
●●●●●

●●
●

●●
●●●●●●

●
●●●●●

●●
●●●●

●●
●

●●
●

●
●●

●●
●

●●

Method 1
Model selection

Method 2
Bootstrap model sele.

Method 3
Model averaging

Method 4
Bootstrap model ave.

A
IC

W
ithout sim

ulation m
odel

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Predefined limit for the probability of achieving target effect (p)

P
ro

ba
bi

lit
y 

a 
do

se
 a

bo
ve

 tM
E

D
 w

as
 s

el
ec

te
d

Fig. 10 The accuracy of calculated probability of achieving target endpoint. The Methods 1–4 used in this example did not include the
simulation model
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Comparison to MCP-MOD (Bretz 2005)

• A pharmacometric extension to MCP-MOD?

• Testing for drug effect using the likelihood ratio test 
for each model, instead of contrast tests.  Can be 
corrected for type 1 error control.(Dette 2015)

• Allows for incorporation of covariate adjusted dosing 
and longitudinal dose-concentration-effect modelling, 
which can have massive power gains over standard 
DR in MCP-MOD in certain situations (Buatois 2018)

- MCP-MOD can be extended to DER models in other ways 
as well (Pinheiro 2017).



Pediatric bridging studies



MBAOD using FDA stopping criteria in 
children bridging studies
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Bioequivalence



https://www.go-acop.org/acop-home

https://www.go-acop.org/acop-home


Conclusions

• Non-longitudinal analysis is fast
• Pharmacometric analysis (in particular longitudinal 

population DER analysis):
- Have higher power
- Decision making with more accuracy and certainty
- Requires an adequate examination of parameter AND 

model uncertainty
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