
Hist Stat 4    Fitting models to data – The path to Least Squares. Adrien-Marie Legendre (1752-1833) 

The end of the 18th century was a time of great ferment all over the globe. The French Revolution began in 
1789, just a few years after the American Revolution. Zeal for new ideas affected every enterprise from 
politics to science. In France a whole new set of scientific units was proposed – the metric system. In the 
old French system, a basic unit of length was called the toise; it was about 6 feet long, similar to a fathom 
in the English system. Now a new unit of length was required, to be called the meter.   

How would the meter be defined? How long was one meter? It was decided that it would be one ten 

millionth of the distance from the equator to the North Pole. Cool. Except that meant that someone had to 
know the distance from the equator to the North Pole.   
 

 

 
 

The final estimate of the length of a meridian arc had to be as precise as possible, which meant that it had to 
agree with a model of the curved shape of the earth.  That shape was an “oblate spheroid,” based on work 
by Newton in 1687.  Then it was necessary to somehow combine all the measurement data to get the best 
set of coefficients to specify the particular instance of that shape. The statistical question was “What do you 
mean by best?” 

The meridian model-fitting problem is similar to finding the best fitting line in a scatter plot. In that case 
you start with an ideal model of a line, � = �� + �, and then find the specific values for m and b that make 
the line fit the data “best.”  The data are a bunch of observed ��, �	 pairs. The “unknowns” in the model are 
m and b. 

With two data points in a scatter plot, say (2,5) and (3,8), you can write two linear equations in two 
unknowns.        5 = ��2	 + �  

8 = ��3	 + � 

This pair of equations has a unique solution, which will give the formula for the specific line that fits those 
two points. Difficulty in a fitting problem arises when there are more equations than unknowns. For 
example, if you have three points in the scatter plot then there may be no straight line that touches all of 
them. You will have three equations but only two unknowns. We say the model is over-determined.  

Suppose we add the third point (4,9). Then we get three equations. 

5 = ��2	 + � 

8 = ��3	 + � 

9 = ��4	 + � 

Of course, it’s not possible to walk due north with 
a ruler from the equator to the North pole, so it’s 
necessary to choose to measure land-based sections 
of some particular meridian. In 1792, a French 
commission decided to measure along the 
particular global meridian arc that went from a 
mountain in Barcelona, Spain, through Paris, to a 
tower in Dunkirk at the northern tip of France. 
[Figure 1] 

Even that section had to be measured in smaller 
pieces.  Furthermore, it was impossible to measure 
everything perfectly. The collection of imprecise 
partial lengths had to be used to estimate the true 
total length.  

We include such a scientific project in the history 
of statistics because it illustrates a fundamental 
statistical task – the aggregation of many pieces of 

data into a few informative values. 

                   Figure 1 

 

Many scientists had been 
working to get an 
improved sense of the 
shape of globe, which 
they called “The Figure of 
the Earth.” Projects like 
the French one had also 
been going on under the 
auspices of other powers. 
In America, in 1763 the 
pre-eminent surveyors 
Mason and Dixon got a 
commission from England 
to do similar work while 
establishing the almost 
perfectly north-south 
border between Maryland 
and Delaware. 
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This system of three equations in two unknowns has no solution. There are no choices for m and b that will 
satisfy all three equations. The statistical solution then is to somehow find values for m and b that do a good 
job of estimating the “true” solution, the line we would have gotten if there had been no errors of 
measurement. 

The problem of fitting models to imperfect data was apparent in two fields of research in the 18th century, 
astronomy (determining the orbits of planets and comets), and geodesy (determining the shape of the 
earth). From about 1750 to 1800 a succession of approaches for model fitting appeared, leading to the one 
we most often use now, fitting of models by the method of least squares. Each method had advantages. 

Mayer’s Method 

In mid-18th century the German astronomer, Tobias Mayer (1723-1762), studied the moon’s orbit. It was 
extremely valuable to know the orbit accurately because navigation of ships was often determined by 
reference to the position of the moon. In 1707 the British Royal Navy had lost four warships and 1,550 
sailors in a naval disaster off the Isles of Scilly because of navigational error. In 1714 the British 
Government began offering prize money for techniques or inventions that would allow for accurate 
determination of the longitude of a ship at sea.  

 Mayer was known for the precision of his observations of the moon, which he published in lunar tables. In 
1755 some of his lunar tables were used by the Royal Astronomer of England to improve the accuracy of 
longitude determination. Mayer died in 1762 at age 39, 
and three years later his widow was awarded ₤3000, 
one of the first longitude prizes (about $600,000 in 
today’s money).  

A fundamental contribution of Mayer’s work was his 
method of combining observational data to fit a model 
of the moon’s motion. He first published this approach 
in 1750. From telescope sightings Mayer had 27 data 
points, which were assumed to be not on a flat line but 
on an arc traced out by the moon. His model therefore 
was not � = �� + �, but was one that involved 
trigonometry to deal with the curvature. It had this 
form:  � � � = �� � �� sin �.  His observed data were 
the values of x, y, and z, and his unknowns were α, β, 
and θ. By algebra he could solve three such equations 
in three unknowns, so he cleverly reduced his set of 27 
equations to a set of three, by splitting them into three 
groups of 9 equations. He then used the sums of the 
coefficients sums to collapse each set of nine in to one 
equation. [Figure 2] Before Mayer’s publication, other 
astronomers had averaged observations, but no one had 
added or averaged coefficients of equations. His 
approach for reducing the number of equations gained 
wide usage and became known as “Mayer’s method.”  

Boscovich’s method of least absolute deviations  

Mayer’s method made sense and was fairly easy to execute, but there was no over-riding theory behind 
how to select the equations for the various groups, and no criteria for judging how good the final fit was.  
In contrast, the next development in model fitting was based on the general principle to minimize total 

error between the model and the data. One way to accomplish this is to minimizes the sum of the absolute 

values of the vertical deviations of the data from the model.  The Jesuit priest and mathematician, Roger 

Boscovich (1711-1787) developed this approach. Boscovich was born in Croatia but was educated and 
worked in Italy, often on projects for Pope Benedict. 

Fig. 2 

 

 
The three equations were derived by adding equations 1, 2, 3, 6, 9, 10, 
11, 12. and 27 in group I, equations 8, 18, 19,  21,  22,  23,  24, 25, and 
26 in group II, and the rest in group III. 
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In 1755, he had published an analysis of data from five locations on the globe to test Newton’s hypothesis 
that the earth is an oblate sphere (flattened at the poles and bulging at the equator). He had concluded that 
Newton might be wrong.  

 “Thus it is evident that the determination … cannot be reconciled with the ellipse of Newton…” (1755) 

Nonetheless, he continued working with these data.  In 1760 he republished the 1755 data explaining how 
he now used a new method of analysis. This time his results were more in accordance with Newton’s 
hypothesis. The significant contribution of Boscovich’s new method was that, unlike Mayer’s intuitive 
approach, it was based on a set of principles that a model fit should satisfy.  

… these three conditions are complied with: the first, that their differences shall be proportional to the differences 

between the versed sines of twice their latitudes; the second, that the sum of the positive corrections shall be equal to 

the sum of the negative ones; the third, that the sum of all the corrections, positive as well as negative, shall be the 

least possible…  [Boscovich 1760, as translated from the French by Stigler] 
 

The first condition about “versed sines” reflected the nature of his particular model, that it was measuring a 
curved arc. (The versed sine of an angle is 1 minus the cosine. It was a common entry in trig tables of the 
18th century.) The second condition is that the negative deviations from the final model balance the positive 
ones. And the third is the one that calls for minimizing the sum of the absolute values of the deviations.    

The data that Boscovich used in 1755 were measurements taken at five spots on the globe. At each location 
researchers had measured the length (in toise units) of one degree of latitude. For a perfectly spherical earth 
all these lengths would be equal.  For an oblate sphere the length of a degree of latitude would be slightly 
longer at the poles. Boscovich’s 
revised analysis based on his 
three principles showed that the 
earth was essentially an oblate 
sphere. In the tables you can see 
the arc lengths at the five 
locations. (57,000 toise is about 
69 miles.) Note that Quito is 
near the equator, and Lapland is 
near the North Pole.  

The basic algebraic model had 

the form � = � + � sin
�

� , 
where a and θ were observed 
data values while z and y were 
the unknowns. Adhering to his 
three principles, Boscovich, 
following Newton’s techniques, 
developed a geometrically based algorithm to solve this system of five equations in two unknowns. His 
approach was later formalized algebraically and made popular by the great French mathematician, Pierre-

Simon Laplace, who illustrated it in his major work, Mécanique céleste (Celestial Mechanics) in 1799.  

The Boscovich-Laplace approach of fitting by least absolute deviations is still sometimes used today, 
particularly in cases where data are not from a normal distribution.  

  

 

Cover of Boscovich’s 1755 

publication 

 
 

 
Translation as shown in Stigler, History of Statistics 
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Legendre and the method of least squares 

In this approach the “best” model is the one that minimizes the sum of the squares of the vertical 

deviations. This method is now the most commonly used to establish goodness of fit. For example, Excel 
uses it to get the regression line on a scatter plot. The first person to give a thorough explanation and 
justification of this approach was Adrien-Marie Legendre, another French mathematician who at the end 
of the 18th century, like Laplace, was working on problems both in astronomy and geodesy.  

Legendre was one of the people calculating the length of the meridian through Paris described in Figure 1. 
In 1798 he had described reducing a set of too many equations in these data and had mentioned the need to 
“balance the errors,” but he had arrived at a solution in a fairly arbitrary way. Then, in 1805, while he was 
writing a paper, New Methods for determining the orbits of comets, he saw that he could improve his 
solution to the too-many-equations problem by minimizing the sum of the squares of the errors.  

Importantly, he realized that his new technique was equally applicable in observations on the shape of the 
earth. So he added an appendix, Sur la Methode des Moindres Quarres, (On the Method of Least Squares). 
Perhaps to stress the generalizability of his method, he gave a clearly worked out illustration using the data 
from the meridian study, even though the memoir was about the orbits of comets. Here is part of his 
introduction. 

On the Method of least squares 

… 

If there are the same number of equations as unknowns x, y, z, &c., 

there is no difficulty in determining the unknowns, and the error E 

can be made absolutely zero. But more often the number of 

equations is greater than that of the unknowns, and it is impossible 

to do away with all the errors. 
 

In a situation of this sort, which is the usual thing in physical and 

astronomical problems, where there is an attempt to determine 

certain important components, a degree of arbitrariness necessarily 

enters in the distribution of the errors, and it is not to be expected 

that all the hypotheses shall lead to exactly the same results; but it is 

particularly important to proceed in such a way that extreme errors, 

whether positive or negative, shall be confined within as narrow limits 

as possible. 
 

Of all the principles which can be proposed for that purpose, I think 

there is none more general, more exact, and more easy of 

application, than that of which we made use in the preceding 

researches, and which consists of rendering the sum of squares of 

the errors a minimum. By this means, there is established among 

the errors a sort of equilibrium which, preventing the extremes from 

exerting an undue influence, is very well fitted to reveal that state of 

the system which most nearly approaches the truth. 

   

        

 

 

The next major development in model fitting was the work of Laplace and Gauss to attach probabilities to 
the final estimates found by least squares. That work took shape over the next twenty years. 
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