
 

History of Probability (Part 5) – Laplace (1749-1827)  

Pierre-Simon Laplace was born in 1749, when the phrase “theory of probability” 

was gradually replacing “doctrine of chances.”  Assigning a number to the 

probability of an event was seen as more convenient mathematically than 

calculating in terms of odds. At the same time there was a growing sense that the 

mathematics of probability was useful and important beyond analysis of games of 

chance. By the time Laplace was in his twenties he was a major contributor to this 

shift. He remained a “giant” of theoretical probability for 50 years. His work, 

which we might call the foundations of classical probability theory, established 

the way we still teach probability today.  
 

Laplace grew up during a period of tremendous discovery and invention in math and science, perhaps the 

greatest in modern history, often called the age of enlightenment. In France, as the needs of the country 

were changing, the role of the major religious groups in higher education was diminishing. Their primary 

charge remained the education of those who would become the leading religious leaders, but other secular 

institutions of learning were established, where the emphasis was on math and science rather than 

theology. Laplace’s father wanted him to be a cleric and sent him to the University of Caen, a religiously 

oriented college.  Fortunately, Caen had excellent math professors who taught the still fairly new calculus. 

When he graduated, Laplace, against his father’s wishes, decided to go to Paris to become a fulltime 

mathematician rather than a cleric who could do math on the side. 

The sense in the air in France (and in England and the United States) was that reason and science would 

benefit society, and that opportunity should be based on individual talent. In France the Royal Academy 

of Science had been established. It paid smart people to do fulltime research. That’s the position Laplace 

wanted. He brought a letter of introduction to the eminent mathematician, d’Alembert, who was 

impressed and got him a job in a new Royal military college (where young Napoleon was a student).  

Starting then, Laplace submitted paper after paper to the Royal Academy, and finally, after about five 

years, he was accepted as a member and became a fulltime professional researcher, submitting papers for 

many years on a great variety of topics, but especially on celestial mechanics.  

The big problems of the day were about the solar system. Newton’s law of gravity was being used in all 

kinds of analyses about objects in the sky.  It had been this kind of work that led Newton’s friend, 

Edmund Halley, in 1704 to predict the arrival of a comet at the end of 1758. Its arrival had tremendously 

impressed Laplace who was 10 years old then. Among the important problems that Laplace worked on 

was what was keeping the planets in their orbits. Why didn’t they crash into each other or the sun? The 

calculus involved was very complicated and was one of the reasons that many European mathematicians 

chose to use Leibniz’s algebraic notation (the style we use now) rather than Newton’s more geometric 

system. Laplace’s 5-volume work Mécanique Céleste (Celestial Mechanics) summarized all that was 

known about the mathematics used to describe the solar system. One of his first contributions was to 

“prove” that the solar system was stable, that it would not fly apart. Laplace is considered one of the 

greatest mathematicians of all time, sometimes called “The Newton of France.” 

During the five years that Laplace was hoping to be admitted to the Royal Academy, he came across 

Abraham De Moivre’s book, Doctrine of Chances.  It struck him that he could use ideas in it to attack the 

problem of describing the probability of causes of events. This is the same problem that Thomas Bayes 

had set himself. They were both thinking about causes in a more general way, not just in the context of 

gambling. Essentially, then, Laplace rediscovered Bayes’ Theorem, and it was Laplace’s publications that 

became well known and that influenced its use in probability and statistics.  
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In 1774, when he was 25 years old, his short paper, Mémoire sur la probabilité des causes par les 

événemens (Memoir on the Probability of the Causes of Events), was published by the Royal Academy 

of Sciences. It was influential in getting him appointed to the Academy. You can see in the excerpt below 

that the level of mathematical sophistication has jumped to calculus. Critically, the rules of combinations 

and permutations become unmanageable with large numbers of trials (or large numbers of data points), 

and so smooth models such as the normal curve come into play. But this means you need to be able to 

calculate integrals to measure areas, and you need tools to find parameters such as means and variance 

using calculus.  

You can see the appearance of calculus notation in the first problem of the memoir. Note that the urn 

contains an infinity of tickets.  This assumption leads to a calculus-based approach for summing “all 

possible” values of a probability from 0 to 1. 

Problem I 

If an urn contains an infinity of white and black t ickets in an unknown ratio, and we 

draw p + q tickets from it, of which p are white and q are black,  then we require the 

probability that when we draw a new ticket from the urn, it will be white.  

SOLUTION. The ratio of the number of white tickets to the total number of tickets contained in the 

urn can be any fraction from 0 up to 1. Now, if we take x as representing this unknown ratio, the 

probability of drawing p white tickets and q black tickets from the urn is ��(1 − �)�. Therefore, the 

probability that x is the true ratio of the number of white tickets to the total number of tickets is, by 

the principle of the preceding section,  

the integral being taken from x = 0 to x = 1. 

 

Laplace continued to write about probability his whole career, with many of his contributions presented in 

his influential text, Théorie Analytique des Probabilités (Analytical Theory of Probability), first 

published in 1812 and then followed by other editions in 1814, 1820, and 1825. A singular contribution 

was his generalization of the Central Limit Theorem. De Moivre had shown that the normal curve 

provided a good approximation to the binomial distribution of the number of successes in repeated trials. 

Laplace showed that the sum of a set of repeated observations of random values from almost any 

distribution can be approximated by a normal curve. This version of the Central Limit Theorem is key to 

explaining why so many distributions used in statistics approach the normal distribution as the sample 

size increases. It is absolutely fundamental to inferential statistics. In this same book he also proved that 

for large numbers of observations the best way to fit observational data to models is through the method 

of least squares, another crucial result.  

Example of using calculus in probability analysis. A probability generating function. 

Consider n = 3 trials of a random process. Each trial will result in either success or failure. Assume that 

for each trial the probability of success is p=¼, so the probability for failure is q = 1-p = ¾. 

The binomial probability distribution is a function that tells you the probability associated with the total 

number of successes, S, you will get in the three trials. 
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Here are all the possible values of S and their probabilities: 

Possible value of S for n = 3 Probability, p(s) 

s=0 �(0) = 1 �1
4
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64 
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�
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64 

s=2 �(2) = 3 �1
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�
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64 

s=3 �(3) = 1 �1
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�
�3

4

�

= 1
64 

 

Note that the coefficients 1, 3, 3, 1 are the entries of 

the third row of Pascal’s triangle which are also 

known as binomial coefficients because they are the 

coefficients in the expansion of the binomial 

expression (� + �)�. 

 (� + �)� = 1�� + 3���� + 3���� + 1�� 

The coefficients tell you the number of different 

ways you can achieve the value of S. For example, 

there are 3 ways to get 1 success in 3 trials. 

 

We can find the mean, or expected value, of S. 

�[�] = ∑  �( ) = 0�(0) + 1�(1) + 2�(2) + 3�(3) = 0 �!
"# + 1 �!

"# + 2 $
"# + 3 �

"# = #%
"# = �

#                                                                              

You can see that if n is a big number, the calculation of the mean would be very tedious. 

De Moivre and Laplace used the concept of a generating function to attack this problem. A generating 

function, G(x), allows us to replace an expression involving many discrete terms by a continuous function 

that has nice calculus properties. One of the nice properties is that &’(() gives the expected value.   

A probability generating function is a polynomial of degree n where the coefficients are the possible 

probabilities. 

For our problem, )(�) = �(0)�� + �(1)�� + �(2)�� + �(3)�� 

                                            =  1 *�
#+� *�

#+� �� + 3 *�
#+� *�

#+� �� + 3 *�
#+� *�

#+� �� + 1 *�
#+� *�

#+� �� 

By putting the x factors together with the ¼ factors we get: 

 

)(�) =  1 *�
# �+� *�

#+� + 3 *�
# �+� *�

#+� + 3 *�
# �+� *�

#+� + 1 *�
# �+� *�

#+�
= *�

# � + �
#+�

 

)(�) =  *�
# � + �

#+�
 is a “nice” continuous function that incorporates the information about S. 

Because ),(�) = 3 *�
# � + �

#+� �
#, we immediately see that �[�] = ),(1) = 3(1) *�

#+ = �
#, as we got earlier. 

More importantly, you can also see that, in general, the generating function for any binomial distribution 

is )(�) = (�� + -). and that ),(�) = /(�� + -).0�� from which we get ),(1) = /�. In short, we have 

proved that the mean of a binomial distribution is given by np.  

 

Exercise 

1. The variance of a random variable is given by: ),,(1) + ),(1) − )′(1)�. Show that the variance of a 

binomial random variable is npq.  
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Nathaniel Bowditch (1773-1838). American translator of Laplace   

A superb annotated English translation of Laplace’s monumental  

Mécanique Céleste, was published in America in 1829. The 

translator was Nathaniel Bowditch “… the country’s most 

accomplished mathematician, the man Thomas Jefferson called “a 

meteor of the hemisphere.” [Thornton,]   

The translation was greeted with great acclaim. It included some 

corrections of errors as well as annotation to make the proofs simpler to follow. It is possible that 

Bowditch was the only person to read Laplace so thoroughly. Many scholars in England, and in Europe, 

were surprised that this level of mathematics was produced in America. A writer in the London Quarterly 

Review expressed his admiration in these words: "The idea of undertaking a translation of the whole 

Mécanique Céleste, accompanied throughout with a copious running commentary, is one… we should 

never have expected to have found originated, [on the opposite shores of the Atlantic].  The translation 

was hugely important for the development of astronomy in the United States. 

Here is the opening of Bowditch’s translation of Laplace’s Volume 1. 

The object of the author, in composing this work, as stated by him in his preface, was to reduce all the known 

phenomena of the system of the world to the law of gravity, by strict mathematical principles; and to complete 

the investigations of the motions of the planets, satellites, and comets, begun by Newton in his Principia. This he 

has accomplished, in a manner deserving the highest praise, for its symmetry and completeness; but from the 

abridged manner, in which the analytical calculations have been made, it has been found difficult to be understood 

by many persons, who have a strong and decided taste for mathematical studies, on account of the time and 

labour required, to insert the intermediate steps of the demonstrations, necessary to enable them easily to follow 

the author in his reasoning. To remedy, in some measure, this defect, has been the chief object of the translator 

in the notes. 

In the fourth volume of the last edition of Laplace's work, fifty-two corrections are noted as having been 

made by Bowditch. Laplace’s widow acknowledged Bowditch's contribution by presenting him a marble 

bust of Laplace.  

Nathaniel Bowditch is still known today for his contribution to commercial maritime navigation. His New 

American Practical Navigator, first published in 1802, has been continually updated and is now available 

online. To this day mariners refer to it simply as “Bowditch.” In 1806 he was offered the chair of 

mathematics and physics at Harvard in 1806, but turned it down to maintain his position in commercial 

maritime insurance.  

_______________________________________ 
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