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Introduction 

DLPs provide new sources of income for workers globally. Acting as an intermediary 

between workers and clients in service fulfillment, over 700 DLPs have been documented 

in 2020 (Rani et al., 2021). Together, the largest DLPs, Appen, Instacart, Meituan, Uber, 

and Upwork generated a total revenue of about USD31.2 billion in 2019 (Rani et al., 2021). 

On DLPs, algorithms rather than humans manage the large number of interactions 

between workers and clients (Lee et al., 2015). This substitution of human management by 

technology, called algorithmic management (AM), enables the platforms’ business model 

(Benlian et al., 2022; Rani et al., 2021). Employing AM holds great potential, such as 

efficient management for platform owners, or equal treatment for workers. However, it also 

comes with ethical challenges (Fieseler et al., 2019; Gal et al., 2020; Schlagwein et al., 

2019). For instance, surveys among DLP workers found that for every hour spent on paid 

tasks, they have to invest between 20 and 23 minutes of unpaid work (Rani et al., 2021). 

While workers may try and circumvent undesirable platform practices, their opportunities 

for resistance are limited (Cameron & Rahman, 2022). Because workers on DLPs are often 

dependent on these platforms for income (Rani et al., 2021), they are especially vulnerable 

to poor work conditions. As such, they deserve the focus of scholarly attention. 

In the literature, AM on DLPs has been investigated from a fairness and unfairness 

perspective, separately. First, specific DLPs were studied in depth in order to identify 

whether and which ethical challenges, including unfairness, exist for workers (e.g., Deng 

et al., 2016; Fieseler et al., 2019; Schlagwein et al., 2019). Thereby, many factors were 

identified, for instance, remuneration, transparency, dispute settlement, feedback and 

respect (Fieseler et al., 2019). These studies combined contribute an encompassing list of 

factors that promote unfairness on DLPs. However, those studies barely consider AM – the 

central aspect of DLPs (Rani et al., 2021) which is designed and deployed deliberately and 

thus may be adapted. Therefore, it remains unclear how AM practices, specifically, 

contribute to unfairness from the workers’ perspective. 

Second, specific AM practices that workers consider to be fair were identified in prior 

literature. This has largely been achieved by researchers developing fair AM practices in 

close collaboration with workers (e.g., Lee et al., 2019; Zhang et al., 2022). While this 

approach shows that fairness can be incorporated into the design of AM practices, it remains 

unclear how AM practices existing on DLPs contribute to workers’ fairness perceptions. 
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Therefore, we allege that there is a lack of a comprehensive analysis of both fairness and 

unfairness in AM practices across a wide range of DLPs. In this research project, we 

investigate the following research question: What makes AM practices fair or unfair, from 

the workers’ perspective? 

Theoretical Foundation 

Algorithmic Management Practices on Digital Labor Platforms 

A growing body of literature on AM established dimensions (e.g., algorithmic direction, 

evaluation, and discipline (Kellogg et al., 2020) and outcomes (e.g., tensions and 

sensemaking (Möhlmann et al., 2021, forthcoming)). Additionally, AM has been 

instantiated in many ways such as functions (e.g., Kellogg et al., 2020) or features (Lee et 

al., 2015). In line with other scholars (e.g., Meijerink et al., 2021), we study AM as practices 

that represent everyday activities of organizing (Feldman & Orlikowski, 2011).  

AM is characterized by opacity (Gal et al., 2020; Kellogg et al., 2020; Möhlmann et al., 

forthcoming), as the algorithmic logic underlying how workers are managed remains 

hidden. Managerial and operational functions can be supported by algorithms fully or 

partially (Cram & Wiener, 2020). These algorithms may or may not be based on machine 

learning. However, workers interact with the algorithm through digital interfaces, e.g., apps, 

receive instructions from the system, and perceive algorithms as co-workers or bosses 

(Möhlmann et al., 2021; Tarafdar et al., 2022). Therefore, AM in this study encompasses 

all practices platforms use to interact with workers in managing work tasks. 

Fairness and Unfairness 

Fairness is a broad concept that is defined differently in many IS-related disciplines 

(Dolata et al., 2021). A body of literature on fairness in the workplace, organizational justice 

literature, has grown in management (Greenberg, 1990). Today, two sets of justice types 

define organizational justice. The first set consists of distributive, procedural, and 

interactional justice (Colquitt et al., 2001). These justice types differ based on whether 

outcomes, processes, or interpersonal interactions are concerned. The second set consists 

of restorative and retributive justice that both take place after an unfair event occurred 

(Darley & Pittman, 2003; Robert et al., 2020). Based on criminal justice literature, the 

victim (i.e., a person who experienced unfairness) is distinguished from the offender (i.e., 

a person who created unfairness) (Kidder, 2007). Retributive fairness is directed toward the 

offender and involves the offender’s punishment. Restorative fairness takes a broader 

perspective and may include compensating the victim, or other victims of similar offenses, 

as well as meaningful punishments of the offender that benefit the victim or the whole 

community (Kidder, 2007). 

In this research project, we define fairness and unfairness in a relational manner (i.e., the 

positive or negative evaluation of a comparison with other workers, clients, or platform 
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owners) and from the subjective view of individual workers, in line with others (e.g., 

Cropanzano et al., 2015). IS scholars suggest addressing algorithmic fairness from a socio-

technical perspective (Dolata et al., 2021; Marjanovic et al., 2022), which we adopt. 

Methodology 

We take an interpretive perspective in the analysis and engage with principles of 

interpretive research (Klein & Myers, 1999). We conducted seven online focus groups with 

23 workers who shared their experiences about working (online or offline) on different 

DLPs (such as Upwork, Clickworker, Ele.me, or Didi). Participants were recruited through 

social media, stem from ten different countries and are, on average, rather young and male. 

Through the interactions among participants, focus groups add richness to the discussions, 

as compared to individual interviews (Merton et al., 1990), because they allow unknown 

information to emerge (Fern, 2001). In the analysis, we adopt established grounded theory 

methodology (GTM) techniques as specified by Glaser (1978) and Urquhart (2012; 2010). 

Preliminary Results 

The findings (see Figure 1) reveal that AM practices are considered unfair if they give 

rise to systematic disadvantages for workers in the form of devaluation (lower returns, 

losing assets), restriction (fewer chances for returns), and exclusion (losing chances for 

returns on the DLP). Unfair AM practices arise from automated decision-making or from 

the delegation of decision-making to clients. However, AM practices can also contribute to 

fairness. First, AM practices can promote fairness in order to avoid unfairness. For instance, 

AM practices can inform workers, offer high agency to workers or take over tasks on the 

workers’ behalf. Second, as unfairness may never be completely avoided, following 

instances of unfairness, AM practices can influence the process of dispute resolution, or the 

outcome of the dispute to restore fairness. 

 
Figure 1. Fair and Unfair AM Practices on DLPs 

Expected Contributions and Outlook 

Reconciling how AM practices promote fairness and unfairness has the potential for 

addressing the issues of (un)fairness in the context of AM on DLPs. Workers expect fairness 
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on DLPs (Deng et al., 2016), especially when they are managed by technology that is 

supposedly more ‘objective’ than humans (Ryan & Wessel, 2015). Failure to meet workers’ 

expectations of fairness not only adversely affects their job satisfaction and trust (Liu & 

Liu, 2019), but is also detrimental to platform owners through higher turnovers (Ma et al., 

2018; Song et al., 2020). Likewise, for policymakers and society, harmful societal effects 

generated by the use of technology are to be avoided (Marjanovic et al., 2022). This is 

especially desirable in the workplace, as human virtue is concerned (Gal et al., 2020). 

This research project has been going on for some time and preliminary analyses were 

conducted and published. Moving forward, we are mainly working on a) refining the main 

concepts (fairness, AM), b) choosing the most appropriate theoretical grounds 

(organizational justice, fairness in algorithms, others), c) collecting additional data (in line 

with theoretical sampling), and d) advancing our theorizing efforts for instance by applying 

methods specific for the analysis of focus group data (e.g., Nili et al., 2017). We aim for a 

theoretical contribution to IS literature (e.g., by explaining how the design of AM practices, 

as one form of algorithmic decision-making, can cause fairness or unfairness).  
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