The inaugural conference of the newly formed Midwest AIS was held in Grand Rapids, Michigan, and sponsored by the Seidman College of Business and the Padnos College of Engineering and Computing, Grand Valley State University. The conference was held in the DeVos Center in downtown Grand Rapids, Michigan, home of the Seidman College of Business.

MWAIS06 provided an intimate environment in order to facilitate the sharing of ideas, and close interaction among participants. Overall, 55 paid attendees and two guests attended the inaugural conference. Attendees were welcomed to the conference by Dean H. James Williams, Seidman College of Business, and Dean Paul Platkowski, Padnos College of Engineering and Computing.

Gordon Davis was the keynote speaker. Pete Tinsley, Deputy Executive AIS Director also addressed the audience, and provided an overview of AIS and its functions.

Doug Havelka presented awards sponsored by the Midwest Journal of Business for best papers:

- First place to Matthew Nelson and Rosie Hauck for “Embedding Student Clickers in an Introductory Management Information Systems Course”
- Second place to Dale Ganley and Clifford Arthur-Cochise Lampe for “How Deep Runs the Karma? Structural Holes and Social Capital in an Online Community”
- Third place to Marie Buche and Joanne Scillitoe for “The Impact of Gender on Sources of Social Capital within Technology Incubators: Technology Learning in Ventures with Female Founders”

The complete conference proceedings can be found in the AIS eLibrary.
On the left: Vance Wilson, MWAIS Secretary, his wife, and Paul Leidig, conference co-chair, chat at the conference reception held at the Gerald Ford Museum. On the right: Paul Leidig, conference co-chair, receives an award from Ilze Zigurs, MWAIS At-Large Director, at the MWAIS business meeting.

On the left: Dan Power, MWAIS President, welcomes the conference attendees to the MWAIS business meeting. On the right: Simha Margral, conference co-chair, Gordon Davis, keynote speaker, and Paul Leidig, conference co-chair, smile for the camera.

On the left: Here is a shot of the audience listening to the conference opening remarks. On the right: Barbara D. Klein, program co-chair, and Chelley Vician, MWAIS Treasurer, chat with a few other MWAIS conference attendees at the Friday night Gerald Ford museum social event.
Technology tailoring is a process that enables end users to select and integrate technology functions in the ongoing creation and recreation of unique information systems. Tailoring occurs with technologies such as Enterprise Resource Planning systems, operating system desktops, and word processing software. These technologies are tailorable within the confines of the functionality and components provided by designers. They allow for a certain amount of user expressiveness around such things as computing style, program preferences, and aesthetic layout. As technology tailoring gains increasing importance, designers have limited control over how tailoring occurs when applications move toward user-defined assemblages of distributed, Internet-based services that support the exchange and sharing of data and processes.

Tailoring is best described as the user-defined design of a technology in the context of its use (Morch and Mehandjiev 2000) and rests on the notion that users ultimately define which functions they use, how those functions are integrated, and how the data provided through those functions is displayed. In today’s world, users of technology are autonomous actors who manipulate objects to accommodate their range of action. They use technology, data, and services in unorthodox ways that are often inconsistent with the ways envisioned by the original designers. The assemblage of parts into a larger whole is done in a tactical, opportunistic, and ad hoc fashion, focusing on short term gain for the user (Gabriel 2002).

A primary characteristic of tailorable technologies is their support of two distinct design phases. First is designing the initial, primary, or default state. Second is the act of tailoring, or the user defined design of the technology during its use. User defined designs result in secondary, tertiary, quaternary, etc. states of tailorable technology. Unlike designers, users do not subordinate each task to the availability of raw materials made available for the purpose of accomplishing a task. The tailored technology often bears little relation to the initial technology provided by designers to accomplish the current project, or any project for that matter. The tailored technology is the result of all the occasions there were to renew or enrich the initial technology or to maintain it with the remains of previous instances of that technology (Lévi-Strauss 1966). Tailorable technologies represent the apex of this unique, dual-design paradigm. Their initial design is explicit in supporting and promoting user modification. Tailorable technologies are not just expected to be modified; they are intended to be modified and as tailorable technologies become more pervasive, it is incumbent on information systems researchers to better understand them.

Tailorable technologies are, in part, based on the principles of component architecture where users are able to select from a set of functions during use (Morch and Mehandjiev 2000; Hummes and Merialdo 2000). Component architecture supports user discovery of functions distributed across nodes within a network. At each node, specific, reusable functions can be integrated by users in the formation of unique technologies (Berners-Lee et al. 2003; Baldwin and Clark 2003). The functional characteristics are necessary, but not sufficient, in designing tailorable technologies, as much of tailoring is based on the reflection and imagination of a user. Users constantly integrate smaller, independent components into increasingly complex, integrated technologies, to manage increasing levels of innovation and growth. Component architectures are a collection of loosely coupled, independent functions that can be aggregated in the formation of larger technologies (Baldwin and Clark 2003). As users perform new tasks, form new groups, or develop new processes, the technology must support these changes.

The success of tailorable technology is not defined only through technological criteria. To be successful, they must engage and encourage users to create secondary states. Gordon Pask (1971) observed that individuals search for novelty and when novelty is found, it is explained, solved,
related, or tailored to an existing body of knowledge. We often create technology metaphors and analogues to search and explain new environments, foster social interaction, communication, cooperation, and tailoring. Users employ functional components in the production of a larger whole and through the integration of these components, technology takes on desired states for end users. However, a technology that does not provide the technical functionality and an engaging environment for the utilization of components will not be tailored. To support users in the tailoring of technologies, designers must present a suite of objects that can be joined for user defined task setting, not just predefined problem solving. The objects of a tailorable technology should be analogous to existing technologies to promote their use. Objects should illustrate the rules they contain, as well as any larger system they are part of. Finally, any object should be functionally complete such that its use provides unique means-end solutions. Each object is then a functional operator which differentiates its own space. It creates distinctions where there were none before. Tailorable systems then become a sequence of these technical and social operators (Alexander 1979).

REFERENCES

In an effort to learn about both collaboration engineering as a field and the research of collaboration engineering, we (both students and researchers) participated in a doctoral seminar about collaboration engineering. The following presents Bloom’s taxonomy as support for an involved student approach, as well as the design of the doctoral seminar and its implementation.

Bloom’s taxonomy (Bloom et al, 1956) describes learning as a continuum involving knowledge, comprehension, application, analysis, and synthesis. The taxonomy suggests that students begin with knowledge and comprehension. The doctoral seminar moved the students/researchers through the phases of application, analysis, and synthesis as it required both knowledge acquisition and knowledge creation through the creation and execution of a collaborative process design.

The course was designed as an advanced research seminar on collaboration engineering titled “Advanced Research in Information Systems: Facilitation of Collaborative Problem Solving.” The seminar was designed to teach the students/researchers the basics of collaboration engineering, facilitation, and process design. There were four doctoral students in the course as well as one professor and a second professor who served as a subject matter expert of information security and attended as needed. The class met for three hours weekly, and held additional meetings outside of the standard class meeting time.

After an initial introduction to the course topics, each student/researcher completed an initial collaborative process design for practice. After this was successfully completed the students/researchers worked together with the seminar professor and the second professor in order to create a process design that could be re-used by practitioners to define an incident response plan in an organization.

The students/researchers learned about research during the course of the seminar because the process design was tested in three studies. The students/researchers acted as the facilitators in the studies in order to learn about facilitation as well as to research the idea that the process could be duplicated in an organization by a practitioner who had little to no knowledge about process design. The first pilot study was held with undergraduate students. The process was modified based on changes that needed to be identified during the first pilot study and the new process was tested in a second pilot study with graduate students. Again, more changes were made and a final study with professionals and academics was used to test the final process design.

Every phase of the research study was completed in the seminar from the formulation of the research question, to literature review of collaboration engineering and incident response planning, planning, task selection, process design, pilot experimentation, study execution, and paper writing. In the end we, the students/researchers, were able to use the results from the research we had done in the course project to write a paper that could be submitted to a conference.

REFERENCES

Future Conference Sponsored by MWAIS

The 2nd Annual Conference for MWAIS

University of Illinois – Springfield
Springfield, Illinois

Track Co-Chairs
Rassule Hadidi and Michele Gibbins

Conference description:
The conference is planned to begin at 1pm May 18 and run through 5:15 pm May 19, 2007.

Important Dates:
- Paper submission deadline: Mid February
- Review result notification: Mid March
- Camera-ready copy deadline: Early April

MWAIS Sponsored Journal Special Issues

Mid-American Journal of Business Special Issue based on 1st Annual MWAIS Conference (2006)

From the papers accepted for presentation at the 1st Annual MWAIS conference, 4 were invited to submit expanded versions for a fast-tracking opportunity with the Mid-American Journal of Business.

\textit{e-Service Journal} Special Issue based on the 2nd Annual MWAIS Conference (2007)

Editor-in-Chief, Ilze Zigurs, has agreed to work with MWAIS in fast-tracking selected best papers from the 2nd Annual MWAIS Conference in 2007. Authors with topics of relevance to \textit{e-Service Journal} will be invited to be part of the special issue. The journal covers a broad range of topics related to electronic services. For details, see the home page at http://www.e-sj.org/ or contact Ilze Zigurs at izigurs@mail.unomaha.edu.

MWAIS Sponsors

MWAIS would like to express its sincere appreciation to the following sponsors. Current and future MWAIS activities would not be possible without their generous support.

[Prentice Hall]
http://vig.prenhall.com/

[Mid-American Journal of Business]
http://www.bsu.edu/web/majb/
Acknowledgement

Thanks to Simha Margral and Paul Leidig for their excellent work at the 1st Annual MWAIS Conference.

Thanks to Na Li for her newsletter template from SIG HCI.

MWAIS Officers

President: Dan Power, University of Northern Iowa, power@dssresources.com

Incoming President: Deepak Khazanchi, University of Nebraska-Omaha, khazanchi@mail.unomaha.edu

Secretary: Vance Wilson, University of Wisconsin-Milwaukee, wilsonv@uwm.edu

Treasurer: Chelley Vician, Michigan Technological University, cvician@mtu.edu

At-Large Director: Ilze Zigurs, University of Nebraska-Omaha, izigurs@unomaha.edu

Membership and Publicity Director: Matt Germonprez, University of Wisconsin-Eau Claire, germonr@uwec.edu

Newsletter Editor: Matt Germonprez, University of Wisconsin-Eau Claire, germonr@uwec.edu

Newsletter Assistant: Alanah Davis, University of Nebraska at Omaha, alanahdavis@mail.unomaha.edu

Conference Planning Chair for MWAIS 2007: Rassule Hadidi, the University of Illinois at Springfield, hadidi.rassule@uis.edu

URLs

AIS website: http://aisnet.org

AIS MWAIS website: http://www.sba.uwm.edu/MWAIS/

AIS MWAIS Newsletter: http://www.sba.uwm.edu/MWAIS/

AIS MWAIS Photo Gallery: http://www.sba.uwm.edu/MWAIS/

ISWORLD website: http://www.isworld.org/