Hydrologic Detection of Abandoned Wells Near Proposed Injection Wells for Hazardous Waste Disposal

IRAJ JAVANDEL, CHIN FU TSANG, AND PAUL A. WITHERSPOON

Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley

INTRODUCTION

Injection into deep saline aquifers is one of several methods used for disposal of hazardous liquid wastes. Although the use of wells for subsurface disposal of industrial wastes has been known since the early 1930s, its use was initially limited to brine disposal [Donaldson, 1964; Warner and Orcutt, 1973]. Injection of hazardous wastes in deep underground aquifers is documented from 1950 [Donaldson, 1964]. Between 1950 and 1965 an average of only two wells per year were built for disposal of hazardous wastes. During the period 1965-1980, however, stricter regulation of industrial waste disposal into surface water bodies resulted in renewed interest in deep-well disposal techniques, leading to construction of more than 130 deep hazardous waste injection wells.

Hazardous waste injection wells are a subset of class I wells. Class I refers to those wells used for disposal of municipal or industrial waste liquids that discharge below the deepest underground source of drinking water (USDW) [Federal Register, 1982]. Figure 1 illustrates the increase in number of total class I wells as well as the hazardous waste subset of them with time. It is estimated that 423 million gal. (1.3 million m³) of nonaqueous hazardous waste with about 10 billion gal. (38 million m³) of water was injected through 181 wells in 1983 [U.S. Environmental Protection Agency, 1985]. Deep-well disposal is used by chemical, petrochemical, and pharmaceutical industries, refineries, steel mills, and photo-processing plants, among others. The depth of the wells is generally between 1,000 and 10,000 ft (300 and 3000 m); most of them are between 2,000 and 6,000 ft deep (600 and 1,800 m). Most of the injection wells are located in states with a long history of oil and gas exploration [Office of Technology Assessment, 1983]. Currently, 15 states have active wells that inject hazardous liquid wastes [U.S. Environmental Protection Agency, 1985].

In an effort to protect underground sources of drinking water against the danger of contamination, the "area of review" concept, which is the major underground injection control (UIC) requirement, has been devised [Anzzolin and Graham, 1984; Thornhill et al., 1982]. The area of review process requires that the records of existing wells penetrating the injection zone be examined to ensure that wells are properly constructed or abandoned. However, the lack of existing records for thousands of the abandoned wells severely hampers the process.

The number of wells abandoned in the United States between 1859 and 1974 is estimated to be 1,647,661 [Anzzolin and Graham, 1984]. Other estimates put this number at 1,930,000 wells [Fryberger and Tinlin, 1984]. Records on the locations and characteristics of many of these wells are nonexistent [Carter, 1984]. Such information is available for only about 1,200,000 abandoned wells. Approximately 450,000 or more of these wells were abandoned between 1859 and 1930. The majority of abandoned wells are also located in regions with a long history of oil and gas exploration. It is estimated that most wells abandoned before 1930 were probably improperly plugged or open abandoned wells. A new analytic solution has been derived to calculate the amount of leakage from an abandoned well and the corresponding drawdown at monitoring wells. A method is proposed that can be used to detect such deep abandoned wells in the area of influence of a proposed deep injection well in a multiple-aquifer system.

Deep saline aquifers are being used for disposal of hazardous liquid wastes. A thorough knowledge of the competency of such aquifers and their confining geologic beds in permanently isolating the hazardous substances is the key to successful disposal operations. Characterization of such systems, and in particular the detection of any conduit that may permit hydraulic communication between the host aquifer and nearby freshwater aquifers, must be carried out prior to the initiation of disposal projects. In deep, multi-aquifer systems, leaky faults, abandoned wells, highly conductive fractures, or shear zones may all provide leakage paths. If not initially detected, such conduits may show no apparent effect until contaminants in the freshwater aquifer reach detectable levels at the discharge point. By then, of course, detection is generally too late. This paper is an attempt to address the problem of initial detection of improperly plugged or open abandoned wells. A new analytic solution has been derived to calculate the amount of leakage from an abandoned well and the corresponding drawdown at monitoring wells. A method is proposed that can be used to detect such deep abandoned wells in the area of influence of a proposed deep injection well in a multiple-aquifer system.

This paper is not subject to U.S. copyright. Published in 1988 by the American Geophysical Union.

Paper number 7W4883.
disposal projects [Gass et al., 1977]. One case of hazardous waste leakage through abandoned wells is reported [U.S. Environmental Protection Agency, 1986]. However, one must be concerned with the potential of leakage for future deep-well injection projects and also keep in mind that leakage through improperly plugged abandoned wells into the USDW could continue for a long time before it can manifest itself at a discharge point. Therefore prior knowledge of the location of deep abandoned wells and their ability to conduct liquid waste to shallow freshwater aquifers is a necessary step toward the design of a successful deep-well injection project.

In this paper, present methods of locating abandoned wells will be briefly reviewed and their shortcomings discussed. A new method will then be introduced which should permit detection of leaky abandoned wells, avoiding the problems encountered in the present methods.

PRESENT METHODS

Methods presently used for determining the location of abandoned wells are discussed in detail by Aller [1984]. These methods can be divided into four groups.

1. Search for existing records and contact local residents. Most states follow this method for locating wells in the area of review; however, records are missing for many wells drilled before 1930.

2. Interpretation of historical aerial photographs. This could be a useful tool except that the use of photographic coverage was not widely employed in the United States before the 1930s [Avery, 1968].

3. Geophysical methods. Magnetic, electrical resistivity, and electromagnetic surveys can be used to detect cased wells. These methods do not work with uncased wells or those equipped with nonmetallic casings. Ground-penetrating radar may be used to find both cased and uncased wells. The major problem with all of these methods is the difficulty in determining whether a well, when located, is properly plugged, or subject to leakage.

4. Hydrologic methods. Two hydrologic techniques have been discussed by Aller [1984]. In the first method, water levels are monitored in wells penetrating the freshwater aquifer overlying the injection formation in the vicinity of the abandoned well. Any major leakage from the abandoned wells should produce a water level anomaly in the freshwater aquifer. However, this method is only feasible if several water wells are already present in the vicinity of an unknown abandoned well. The second method involves injection of fluid into the injection zone. The presence of a leaky abandoned well is indicated if pressure resulting from fluid injection causes fluid to flow up through the abandoned well to the ground surface. However, if the conduit is not open to the surface or the induced pressure increase is insufficient, there may be no observable leakage to the surface.

PROPOSED NEW METHOD

Theory

Let us assume that aquifer A is a shallow freshwater aquifer and aquifer B is a deep aquifer underlying aquifer A. Aquifer B is assumed to be homogeneous, isotropic, uniform in thickness, and of infinite areal extent. An aquiclude with very low hydraulic conductivity separates these two aquifers (see Figure 2). Let us further assume that liquid is injected into aquifer B through well 1 at constant rate Q. Assume also that well 2 is an abandoned well located at distance R from the injection well. Originally open in both aquifers, well 2 has never been properly plugged. If sufficient hydraulic head builds up in aquifer B, some fluid may migrate up through the abandoned well from aquifer B into aquifer A, perhaps even reaching the ground surface. We want to determine the effect of such migration at the injection well itself and at an appropriately located monitoring well (well 3). This leads to a procedure for locating the abandoned well. First we will look at the effect at a monitoring well.

The change of hydraulic head at well 2 due to injection at well 1 is given by [Theis, 1935]

\[\Delta h_2 = \frac{Q}{4\pi T} \text{Ei} \left(\frac{R^2}{4a} \right) \]

where T and a are the transmissivity and hydraulic diffusivity of aquifer B and $-\text{Ei}(-x)$ is the exponential integral. Assuming that at any moment the rate of leakage Q₂ from aquifer B to A through the abandoned well is proportional to the difference between the hydraulic head at the two aquifers and
inversely proportional to the resistance to the flow, \(\Omega \), one can write
\[
Q_2(t) = \frac{\Delta h'_1 - H_1}{\Omega}
\]
where \(H_1 \) is initial difference in the hydraulic head between aquifers A and B (i.e., \(h_a - h_b \)) and \(\Delta h'_1 \) is net increase in hydraulic head at the abandoned well in aquifer B. The expression for \(\Delta h'_1 \) may be written as
\[
\Delta h'_1(t) = \Delta h_2(t) - s_w(t)
\]
where \(s_w(t) \) is drawdown at the abandoned well due to leakage through that well. The expression for \(s_w(t) \) may be written as
\[
s_w(t) = \frac{1}{4\pi T} \int_0^t Q_2(t') \exp \left[-\frac{r_w^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')}\]
Here \(Q_2(t) \) is the rate of leakage from the abandoned well and \(r_w \) the effective radius of that well. Substituting for \(\Delta h'_1 \) in (2) yields
\[
Q_1(t) = \frac{1}{4\pi T} \left\{ -Q \cdot \text{Ei} \left(\frac{R^2}{4\alpha t} \right) - \int_0^t Q_2(t') \cdot \exp \left[-\frac{r_w^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')} \right\}
\]
If, for the sake of shortening the equations, we assume that the initial heads in both aquifers are the same, and thus, letting \(H_1 \) vanish, (5) may be written as
\[
\Omega Q_2(t) + \frac{1}{4\pi T} \int_0^t Q_2(t') \cdot \exp \left[-\frac{r_w^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')} = \frac{Q}{4\pi T} \cdot \text{Ei} \left(\frac{R^2}{4\alpha t} \right)
\]
One must first find \(Q_2(t) \) in order to calculate the effect of such leakage at other points in the aquifer.

The Laplace transformation of (6) with respect to \(t \) is
\[
\Omega Q_2 + \frac{1}{4\pi T} \left\{ 2Q_2 K_0 \left(\frac{R}{\alpha} \right) \right\} = \frac{2Q}{4\pi Tp} \cdot K_0 \left(\frac{R}{\alpha} \right)/\left(\frac{R}{\alpha} \right)^{1/2}
\]
where \(K_0 \) is the modified Bessel function of second kind and zero order and \(p \) is the Laplace transform parameter. Solving for \(Q_2 \), we obtain
\[
Q_2 = \frac{(Q/2\pi T)[K_0(R/p)^{1/2}]/(p)}{\Omega + (1/2\pi T)K_0[R/(p)^{1/2}]}
\]
Equation (8) gives the solution for the leakage rate from the abandoned well in the Laplace transform domain. To obtain the Laplace inversion of (8), we use the complex inversion integral shown below:
\[
Q_2 = \frac{1}{2\pi i} \lim_{\gamma \to \infty} \int_{-\infty}^{\infty} \exp \left(\lambda t \right)
\cdot \left(\frac{Q/2\pi T)[K_0(R/(\lambda)^{1/2})]}/(\lambda) \right) \frac{d\lambda}{\Omega + (1/2\pi T)K_0[R/(\lambda)^{1/2}]}
\]
where \(\gamma \) is so large that all singularities of the integrand in (9) lie to the left of the line \((\gamma - i\infty, \gamma + i\infty) \) on the complex plane. The appendix shows the procedure for solving (9), and the result is given below.
\[
Q_2(t) = \frac{2Q}{\pi} \int_0^\infty e^{-\omega t} \left(J_0(uR)[4\pi T - Y_0(\omega)u] + J_0(\omega)Y_0(uR) \right) u \du
\]
where \(J_0 \) and \(Y_0 \) are Bessel functions of the first and second kind, respectively. Equation (10) gives the leakage rate from the abandoned well located at distance \(R \) from the injection well. In dimensionless form, (10) may be written as
\[
Q_2(t) = 1 - \frac{2}{\pi} \int_0^\infty e^{-\omega t} \left(J_0(uR)[2\omega^2/2 - Y_0(\omega)u] + J_0(\omega)Y_0(uR) \right) u \du
\]
Drawdown due to Leakage

Drawdown due to leakage from an abandoned well, observed at a monitoring well located at distance \(r_2 \) from the abandoned well, may be obtained from the following equation:
\[
h_2(t, r_2) = \frac{1}{4\pi T} \int_0^t Q_2(t') \cdot \exp \left[-\frac{r_w^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')}
\]
Substituting for \(Q_2 \) from (10) yields
\[
h_2(t, r_2) = \frac{Q}{2\pi^2 T} \int_0^t \exp \left[-\frac{r_w^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')} - \frac{Q}{2\pi^2 T} \int_0^t \left\{ \int_0^\infty e^{-\omega t} \left(J_0(uR)[4\pi T - Y_0(\omega)u] + J_0(\omega)Y_0(uR) \right) u \du \right\} \left(\frac{R}{\alpha} \right)^{1/2} \cdot \left(\frac{R}{\alpha} \right)^{1/2}
\]
To obtain the corresponding drawdown at the injection well itself, we substitute \(R \) for \(r_2 \) in (17). As a result, we obtain
\[
h_2(t, R) = \frac{Q}{4\pi T} \int_0^t \exp \left[-\frac{R^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')} - \frac{Q}{2\pi^2 T} \int_0^t \exp \left[-\frac{R^2}{4\alpha(t-t')} \right] \frac{dt'}{(t-t')} - \frac{Q}{2\pi^2 T} \int_0^t \left\{ \int_0^\infty e^{-\omega t} \left(J_0(uR)[4\pi T - Y_0(\omega)u] + J_0(\omega)Y_0(uR) \right) u \du \right\} \left(\frac{R}{\alpha} \right)^{1/2} \cdot \left(\frac{R}{\alpha} \right)^{1/2}
\]
TABLE 1. Values of QD(t) for r = 0.001

<table>
<thead>
<tr>
<th>t D</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.50</th>
<th>1.00</th>
<th>5.00</th>
<th>10.00</th>
<th>20.00</th>
<th>50.00</th>
<th>100.00</th>
<th>200.00</th>
<th>500.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>t P</td>
<td>0.1</td>
<td>0.014</td>
<td>0.014</td>
<td>0.013</td>
<td>0.012</td>
<td>0.008</td>
<td>0.005</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.028</td>
<td>0.027</td>
<td>0.025</td>
<td>0.021</td>
<td>0.018</td>
<td>0.015</td>
<td>0.011</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.050</td>
<td>0.060</td>
<td>0.065</td>
<td>0.070</td>
<td>0.075</td>
<td>0.080</td>
<td>0.085</td>
<td>0.090</td>
<td>0.095</td>
<td>0.100</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.120</td>
<td>0.119</td>
<td>0.118</td>
<td>0.117</td>
<td>0.116</td>
<td>0.115</td>
<td>0.114</td>
<td>0.113</td>
<td>0.112</td>
<td>0.111</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>0.161</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.193</td>
<td>0.192</td>
<td>0.191</td>
<td>0.190</td>
<td>0.189</td>
<td>0.188</td>
<td>0.187</td>
<td>0.186</td>
<td>0.185</td>
<td>0.184</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>0.223</td>
<td>0.222</td>
<td>0.221</td>
<td>0.220</td>
<td>0.219</td>
<td>0.218</td>
<td>0.217</td>
<td>0.216</td>
<td>0.215</td>
<td>0.214</td>
<td>0.213</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>0.260</td>
<td>0.259</td>
<td>0.257</td>
<td>0.256</td>
<td>0.255</td>
<td>0.254</td>
<td>0.253</td>
<td>0.252</td>
<td>0.251</td>
<td>0.250</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>70.0</td>
<td>0.273</td>
<td>0.272</td>
<td>0.270</td>
<td>0.269</td>
<td>0.268</td>
<td>0.267</td>
<td>0.266</td>
<td>0.265</td>
<td>0.264</td>
<td>0.263</td>
<td>0.262</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>0.286</td>
<td>0.285</td>
<td>0.283</td>
<td>0.282</td>
<td>0.281</td>
<td>0.280</td>
<td>0.279</td>
<td>0.278</td>
<td>0.277</td>
<td>0.276</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>200.0</td>
<td>0.311</td>
<td>0.309</td>
<td>0.307</td>
<td>0.305</td>
<td>0.303</td>
<td>0.301</td>
<td>0.299</td>
<td>0.297</td>
<td>0.296</td>
<td>0.294</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>500.0</td>
<td>0.340</td>
<td>0.339</td>
<td>0.337</td>
<td>0.336</td>
<td>0.335</td>
<td>0.334</td>
<td>0.333</td>
<td>0.332</td>
<td>0.331</td>
<td>0.329</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td>700.0</td>
<td>0.351</td>
<td>0.350</td>
<td>0.348</td>
<td>0.347</td>
<td>0.346</td>
<td>0.345</td>
<td>0.344</td>
<td>0.343</td>
<td>0.342</td>
<td>0.341</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>0.362</td>
<td>0.360</td>
<td>0.359</td>
<td>0.358</td>
<td>0.357</td>
<td>0.356</td>
<td>0.355</td>
<td>0.354</td>
<td>0.353</td>
<td>0.352</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td>0.381</td>
<td>0.380</td>
<td>0.378</td>
<td>0.377</td>
<td>0.376</td>
<td>0.375</td>
<td>0.374</td>
<td>0.373</td>
<td>0.372</td>
<td>0.371</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>0.406</td>
<td>0.404</td>
<td>0.403</td>
<td>0.402</td>
<td>0.401</td>
<td>0.400</td>
<td>0.399</td>
<td>0.398</td>
<td>0.397</td>
<td>0.396</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td>7,000</td>
<td>0.414</td>
<td>0.413</td>
<td>0.412</td>
<td>0.411</td>
<td>0.410</td>
<td>0.409</td>
<td>0.408</td>
<td>0.407</td>
<td>0.406</td>
<td>0.405</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>0.423</td>
<td>0.421</td>
<td>0.420</td>
<td>0.419</td>
<td>0.418</td>
<td>0.417</td>
<td>0.416</td>
<td>0.415</td>
<td>0.414</td>
<td>0.413</td>
<td>0.412</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>0.439</td>
<td>0.438</td>
<td>0.436</td>
<td>0.435</td>
<td>0.434</td>
<td>0.432</td>
<td>0.431</td>
<td>0.430</td>
<td>0.429</td>
<td>0.428</td>
<td>0.427</td>
</tr>
<tr>
<td></td>
<td>50,000</td>
<td>0.459</td>
<td>0.458</td>
<td>0.456</td>
<td>0.455</td>
<td>0.454</td>
<td>0.452</td>
<td>0.451</td>
<td>0.450</td>
<td>0.449</td>
<td>0.448</td>
<td>0.447</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>0.466</td>
<td>0.465</td>
<td>0.463</td>
<td>0.462</td>
<td>0.460</td>
<td>0.459</td>
<td>0.458</td>
<td>0.457</td>
<td>0.456</td>
<td>0.455</td>
<td>0.454</td>
</tr>
</tbody>
</table>

In dimensionless form, (17) and (18) may be written as

\[h_{2D}(t, R_P) = \frac{1}{\pi t} \exp \left(- \frac{t}{4} R_P^2 \right) \]

and

\[h_{2D}(t, 1) = \frac{1}{\pi} \int_0^\infty e^{-y} \frac{dy}{y} \]

where

\[h_{2D} = \frac{2\pi Th_2}{Q} \]

\[R_P = \frac{r \gamma}{\Omega_P} \]

DISCUSSION AND RESULTS

Equation (11) gives the amount of leakage that may occur through an improperly plugged abandoned well existing in the vicinity of an injection well. The abandoned well is assumed to be open in the injection formation and in an upper aquifer, thus providing a conduit between the formation and the aquifer that might be an underground source of drinking water. The amount of leakage is a function of time, the resistance of the abandoned well to flow, rate of injection, and the distance between the two wells. Hydrologic properties of the injected formation are also important parameters in controlling the leakage rate. All of these controlling factors have been combined into four dimensionless parameters: QD, t D, Ω P, and r w.

Equation (11) has been evaluated for several values of r w, and a wider range of t D and Ω P. Table 1 shows values of QD(t) for r w = 0.001 and useful ranges of t D and Ω P. More extensive tables are presented elsewhere [Javandel et al., 1986]. Figure 3 shows the variation of QD as a function of dimensionless time for values of Ω P ranging between 0.01 and 100, and r w = 0.002. Examination of results indicates that for a given value of time, little change in QD is achieved by decreasing the resistance of the abandoned well beyond Ω P = 0.01. Figure 3 shows that for some unfavorable conditions where resistance to flow in the abandoned well is negligible, up to about 50% of the injection rate may leak through this well. One may note that this is the upper limit of leakage and is unlikely to happen. When the leakage rate is relatively high, pressure buildup in the upper aquifer becomes appreciable, and that will reduce the driving force causing the leakage. It must be emphasized that, at least at early times, the leaking fluid consists of the...
host-formation water, which although free from injection fluid, is greatly inferior to drinking water quality.

If the distance between the abandoned well and the injection well is known, and an estimate of the hydraulic resistance of the abandoned well has been made, then the results from (11) can be used to obtain leakage rates and their variation with time.

An examination of (19) reveals that \(h_{2p} \) is a function of dimensionless time \(t_p \), dimensionless hydraulic resistance \(\Omega_p \), dimensionless radii \(R_p \) and \(r_{wp} \). Therefore values of \(h_{2p} \) have been calculated and presented for a large range of \(t_p \), and some reasonable values of \(R_p, \Omega_p \), and for \(r_{wp} = 0.002 \). Table 2 presents values of net drawdown caused by the leakage of fluid through the abandoned well at a monitoring well tapping the injection zone for \(R_p = 0.5 \). Tables of \(h_{2p} \) for other values of \(R_p \) are available elsewhere [Javandel et al., 1986].

Figure 4 presents variations of head with time observed in a monitoring well located 100 m from the injection well. An examination of (19) reveals that \(h_{2p} \) is a function of dimensionless hydraulic resistance \(\Omega_p \). Therefore one must modify the type-curve-matching analysis.

Since the cost of drilling and construction of a separate monitoring well is relatively high, one may be able to use the injection well for measuring pressure changes with time. This will fix the value of \(R_p \) at unity and, as a result, eliminate one of the dimensionless parameters.

Figure 6 illustrates the effect of \(r_{wp} \) on the plot of dimensionless resistance.
sionless drawdown versus dimensionless time for \(R_D = 1 \) and
\(\Omega_D = 10 \). This figure shows that the two curves covering a
reasonable range of \(r_{wp} \) run parallel and are close to each
other. Similar studies for other values of \(\Omega_D \) show the same
results. Therefore for the sake of simplicity, for each \(\Omega_D \) one
may replace two curves with an averaged one and thus eliminate
the parameter \(r_{wp} \). Figure 7 shows a set of type curves
representing the variation of \(h_{2D} \) versus \(t_D \) for \(R_D = 1 \) and
\(r_{wp} \) ranging between 0.001 and 0.0001. This figure, which is based
on one running parameter, \(\Omega_D \) can be used for analysis of
data obtained from the injection well.

Procedure for Finding Abandoned Well

The following is the step-by-step procedure for determining
the location of an unplugged or improperly plugged aban-
doned well that may establish a conduit between a deep injec-
tion zone and a more shallow freshwater aquifer.

1. Inject water at constant rate \(Q \) in the proposed deep
disposal well. The rate \(Q \) should be equal to or greater than
the maximum injection rate planned for that well.
2. Record the change of hydraulic head in the injection
well with time.
3. Having obtained the hydraulic properties (\(T, S \)) of the
injection zone from conventional pump tests or other sources,
calculate the expected hydraulic head buildup at the injection
well in the absence of leakage.
4. Find \(h_2 \), the difference between the calculated values of
buildeup obtained in step 3 and the measured values from step
2.
5. Convert the drawdowns obtained in step 4 into dimen-
sionless form using \(h_{2D} = 2T h_2 / Q \).
6. Plot values for \(h_{2D} \) versus time on log-log paper having
the scale used in Figure 7.
7. Superimpose the plot obtained in step 6 over the log-log
type curves in Figure 7. Keeping the horizontal axis of both
plots coincident (make sure that horizontal axes refer to the
same value of \(h \)), shift the top plot horizontally until you
obtain the best match with one of the curves in Figure 7. If the
best match happens to fall between two of the curves, ad-
ditional curves can be plotted from available data. Because the
plots cannot be shifted vertically over each other, the amount
of error in this process is usually not appreciable. Once the
best match is obtained, read the value of \(\Omega_D \) from the curve
that best matches the measured data, and read values of \(t \) and
\(t_D \) from any matching point.
8. Calculate the value of \(R \) from

\[
R = \left(\frac{t}{t_D} \right)^{1/2}
\]

where \(R \) is the estimated distance between the injection well
and the leaky abandoned well.
9. Estimate the magnitude of \(r \), and calculate \(r_{wp} \) from
(14), i.e., \(r_{wp} = r / R \).
10. Choose the appropriate table of variation of \(Q_p \) versus
\(t_p \) for the known value of \(\Omega_p \). Table 1 is a sample for \(r_{wp} = 0.001 \). For other values of \(r_{wp} \) refer to Javandel et al. [1986].
11. Tabulate variation of \(Q_p \) versus time by using the defi-
nition of dimensionless parameters.

Further information about the location of the abandoned
well can be obtained if an observation well is available. Let \(r_1 \)
represent the distance between the injection and observation
well. To find the distance between the observation well and
the abandoned well, \(r_2 \), the following steps may be carried out.

1. Plot the variation of the \(h_{2D} \) from Table 2 or Javandel et
al. [1986], versus \(t_p \), on log-log paper for the known value of

Fig. 5. The effect of dimensionless distance on departure times
from the no-leakage curve.

Fig. 6. Effect of \(r_{wp} \) on the drawdown calculated for the injection
well and \(\Omega_D = 10 \).

Fig. 7. Type curves of dimensionless drawdown versus dimension-
less time for the injection well and several values of \(\Omega_D \) ranging
between 1 and 1000 and \(r_{wp} \) between \(10^{-2} \) and \(10^{-4} \).
2. Calculate net drawdown due to leakage from the abandoned well at the observation well (follow steps 2-4 above).

3. Convert \(h_z \) and \(t \) from step 2 into dimensionless parameters \(h_z^2 \) and \(t_D \).

4. Plot \(h_z^2 \) versus \(t_D \) obtained in step 3 on log-log paper with the scale used in step 1.

5. Superimpose the plot prepared in step 4 onto the one obtained in step 1. Keeping both axes of both plots coincident, read the appropriate \(R_D \) from the curve matching the observed curve.

6. Calculate \(r_2 \) from

\[
 r_2 = R_D R \quad (24)
\]

7. Using the location of the injection well as a center, draw a circle of radius \(R \); using the location of the observation well as a center, draw another circle with a radius of \(r_2 \). As shown in Figure 8, the two circles will intersect as two points, one of which will be the location of the abandoned well.

8. If surface investigation fails to identify the true position of the abandoned well from these two points, then another observation well is needed to estimate the true position of the abandoned well.

Example 1. This example is designed to show how the results of this study may be used to estimate the time variation of drawdown at the injection well due to leakage from the abandoned well and thus examine the limitation of this method.

Consider a deep sandstone formation intercalated between two impermeable layers. The sandstone has a thickness of 30 m (98.4 ft). The hydraulic conductivity and storage coefficient of the sandstone are assumed to be \(10^{-6} \text{ m/s} \) (0.283 ft/d) and \(9 \times 10^{-5} \), respectively. Let us suppose that we want to test an injection well at a rate of \(3.79 \times 10^{-3} \text{ m}^3/\text{s} \) (600 gpm). We also assume that an unplugged or improperly plugged abandoned well is located at 200 m (656 ft) from the injection well. Examine a wide range of \(\Omega \) between 1 and \(10^7 \text{s/m}^2 \). The lower limit of \(\Omega \) represents the open casing, and the upper limit represents the case where the well is filled with materials having a permeability of the order of darcies. Estimate variation of drawdown in the injection well with time due to leakage from the abandoned well.

Dimensionless parameters corresponding to the given case are calculated. Because we are monitoring the injection well itself, \(R = r_2 \); thus

\[
 R_D = \frac{r_2}{R} = 1
\]

Estimating a radius of 0.2 m for the abandoned well leads to

\[
 r_{wp} = \frac{0.2}{200} = 0.001
\]

Values of \(\Omega_D \) vary between \(1.9 \times 10^{-4} \) and 1.880. Table 3 gives the values of dimensionless drawdown versus dimensionless time for the above parameters. Conversion factors for changing values of dimensionless time and dimensionless...
drawdown can be calculated from

\[t = \frac{R^2}{Q} \cdot t_p = \left(\frac{(200 \text{ m})^2}{(0.333 \text{ m}^2/\text{s})(60 \text{ s/min})} \right) t_p = 2000 t_p \text{ min} \quad (27) \]

\[h_2 = \frac{Q}{2\pi T} \cdot h_2 = 0.379 \times 10^{-2} \text{ m}^3/\text{s} \quad h_2 = 201.06 h_2 \text{ m} \quad (28) \]

Applying the above two equations, Table 3 gives the net time variation of drawdown at the injection well as a function of \(\Omega_p \). The results are shown in Table 4.

Obviously in this example when permeability of the fill material in the abandoned well is less than a tenth of one darcy, the magnitude of the leakage is very small. As a result, the corresponding drawdown observed at the injection well is too small to give reliable results, since errors in field measurement of hydraulic head can overshadow these small drawdowns.

Example 2. This hypothetical example is intended to illustrate the detection of a leaky abandoned well in the vicinity of a proposed deep injection well, and the estimation of the distance between the two wells. The leakage rate from the abandoned well is also calculated.

Table 5 shows values of the net drawdown (difference between the observed and calculated nonleaky values of buildup) in an injection well, located in a sandstone aquifer having the properties described in example 1. If the injection rate is again \(3.79 \times 10^{-2} \text{ m}^3/\text{s} \) (600 gpm), estimate the distance of the unplugged, or improperly plugged, abandoned well from the injection well, and the time variation of leakage rate in the abandoned well.

The procedure is as follows:

1. Calculate the corresponding dimensionless drawdown \(h_2 \) for each value of drawdown given in Table 5 as given by

\[h_2 = \frac{2\pi T h_2}{Q} = \frac{2\pi(3 \times 10^{-5} \text{ m}^2/\text{s})}{3.79 \times 10^{-2} \text{ m}^3/\text{s}} \cdot h_2 = 4.97 \times 10^{-3} h_2 \text{ m} \quad (29) \]

Table 5. Values of the Net Drawdown Calculated From Measured Data at the Injection Well for Example 2

<table>
<thead>
<tr>
<th>Time, min</th>
<th>Drawdown, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.34</td>
</tr>
<tr>
<td>2,000</td>
<td>0.80</td>
</tr>
<tr>
<td>5,000</td>
<td>1.93</td>
</tr>
<tr>
<td>10,000</td>
<td>3.25</td>
</tr>
<tr>
<td>20,000</td>
<td>5.02</td>
</tr>
<tr>
<td>50,000</td>
<td>8.00</td>
</tr>
<tr>
<td>100,000</td>
<td>10.83</td>
</tr>
</tbody>
</table>

Table 6 shows the calculated values of \(h_2 \) versus time.

2. Plot \(h_2 \) versus time on log-log paper with the scale used in Figure 7.

3. Superimpose this plot on Figure 7 and keep the horizontal axes \((h_2 = 10^{-3})\) of both figures coincident. Shift the top figure horizontally until the plot of the measured data matches one of the type curves in Figure 7. Read the values of \(t \) and \(t_p \) from any arbitrary match point on both figures. The value of \(t \) corresponding to \(t_p = 1 \) would be 2000 min.

4. Calculate the distance between the abandoned and injection well from

\[R = \left(\frac{Q}{t_p} \right)^{1/2} = \left(\frac{(0.333 \text{ m}^2/\text{s})(2 \times 10^{-3} \text{ min})(60 \text{ s/min})}{1} \right)^{1/2} = 200 \text{ m} \quad (30) \]

5. The value of \(\Omega_p \) from the matching type curve is \(\Omega_p = 100 \) \((31) \)

6. If we assume a radius of 0.2 m for the abandoned well, the corresponding value of \(r_w \) would become 0.2/200 = 0.001.

7. Find values of \(Q_w \) as a function of \(r_w \) for \(r_w = 0.001 \) and \(\Omega_p = 100 \) using Table 1. Convert \(t_p \) and \(Q_w \) to \(t \) and \(Q_2 \) using (13) and (12). The results are tabulated in Table 7.

Summary and Conclusions

For thousands of abandoned wells drilled prior to 1930 there are no records on their location and characteristics. It is believed that the majority of these wells are improperly plugged. Many of the wells are located in regions in which underground deep-disposal facilities have or are being established. Consequently, the deep-disposal facilities in these regions are subject to the risk of leakage through nearby abandoned wells. It is therefore very important to detect any
TABLE 7. Time Variation of Leakage From the Abandoned Well for Example 2

<table>
<thead>
<tr>
<th>t_0</th>
<th>t, min</th>
<th>Q_D</th>
<th>Q_2, gpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>200</td>
<td>0.001</td>
<td>0.6</td>
</tr>
<tr>
<td>0.2</td>
<td>400</td>
<td>0.002</td>
<td>1.2</td>
</tr>
<tr>
<td>0.5</td>
<td>1,000</td>
<td>0.004</td>
<td>2.4</td>
</tr>
<tr>
<td>0.7</td>
<td>1,400</td>
<td>0.005</td>
<td>3.0</td>
</tr>
<tr>
<td>1.</td>
<td>2,000</td>
<td>0.006</td>
<td>3.6</td>
</tr>
<tr>
<td>2.</td>
<td>4,000</td>
<td>0.009</td>
<td>5.4</td>
</tr>
<tr>
<td>5.</td>
<td>10,000</td>
<td>0.012</td>
<td>7.2</td>
</tr>
<tr>
<td>7.</td>
<td>14,000</td>
<td>0.014</td>
<td>8.4</td>
</tr>
<tr>
<td>10.</td>
<td>20,000</td>
<td>0.015</td>
<td>9.0</td>
</tr>
<tr>
<td>20</td>
<td>40,000</td>
<td>0.018</td>
<td>10.8</td>
</tr>
<tr>
<td>50</td>
<td>1×10^4</td>
<td>0.022</td>
<td>13.2</td>
</tr>
<tr>
<td>70</td>
<td>1.4×10^5</td>
<td>0.024</td>
<td>14.4</td>
</tr>
<tr>
<td>100</td>
<td>2×10^5</td>
<td>0.025</td>
<td>15.0</td>
</tr>
<tr>
<td>500</td>
<td>1×10^6</td>
<td>0.032</td>
<td>19.2</td>
</tr>
<tr>
<td>1000</td>
<td>2×10^6</td>
<td>0.035</td>
<td>21.0</td>
</tr>
<tr>
<td>5000</td>
<td>1×10^7</td>
<td>0.042</td>
<td>25.2</td>
</tr>
<tr>
<td>10,000</td>
<td>2×10^7</td>
<td>0.045</td>
<td>27.0</td>
</tr>
</tbody>
</table>

To convert gallons per minute (gpm) to cubic meters per second (m^3/s), multiply by 6.309×10^{-5}.

wells that may be within the area of influence of a proposed deep injection well.

In this paper a new method is proposed for detecting the presence of an improperly plugged abandoned well near a proposed injection well. The method is based in pump testing the injection well. Measurement of pressure variations within the injection and/or observation well(s), coupled with the use of the new set of type curves given in this paper, should reveal the distance of a leaky abandoned well to an injection well. Extensive tables provided by this work enable one to determine the leakage from the abandoned well and its variation with time. Furthermore, approximate location of the leaky well can be determined by measuring pressure variations in an observation well located in the vicinity of the injection well.

There are two conditions under which this method may not be applicable.

1. If the confining layers leak. (since the effect of leakage from the confining layers overshadows the effect of leakage from the improperly plugged well), one may not be able to detect the abandoned well. However, this is beyond our scope of interest because if the layers above and/or below the injection zones leak, the zone is not suitable for disposal of hazardous liquid wastes anyway.

2. If the abandoned well is filled with very low permeability materials (of the order of one tenth of a darcy or less), the amount of leakage from the well is so small that the corresponding drawdown measured in the observation or injection well is too small to be detected. However, the solution derived in this work and the resulting tables should enable one to estimate the magnitude and variation of leakage from a hypothetical well located at a given distance and the materials filling the borehole have a given permeability.

APPENDIX: LAPLACE INVERSION OF (8)

As was noted, the Laplace inversion of (8) may be obtained through application of the complex integral shown below:

$$Q(t) = \frac{1}{2\pi i} \lim_{\beta \to \infty} \int_{\gamma-i\infty}^{\gamma+i\infty} \exp(\lambda t) \frac{(Q/2\pi T)K_0[R\lambda(a)1/2]}{\Omega + (1/2\pi T)K_0[r\lambda(a)1/2]} d\lambda$$

(A1)

where γ is so large that all singularities of the integrand in (A1) lie to the left of the line ($\gamma - i\infty$, $\gamma + i\infty$). To perform the above integration, it is customary to choose a new path shown by the contour given in Figure A1. The value of the integral over the line AB when R tends to infinity gives the solution for $Q_0(t)$. Since the integral over the large circle with the radius R vanishes when R tends to infinity, the value of the integral in (A1) is equal to the integral over CD, EF, and the small circle DE.

On CD we let $\lambda = au\beta^e$. Then

$$\frac{d\lambda}{\lambda} = \frac{2au\beta^e du}{\beta^e} = \frac{2 du}{u}$$

and if the integral on CD, when R tends to infinity, is represented by I_{CD}, then

$$I_{CD} = \frac{Q}{2\pi^2 Ti} \int_0^\infty e^{-u\beta^e} \frac{K_0[R\beta^e(u/2)]}{\Omega + (1/2\pi T)K_0[r\beta^e(u/2)]} du$$

(A2)

Substituting for K_0 in terms of J_0 and Y_0, we obtain

$$I_{CD} = \frac{Q}{2\pi^2 T i} \int_0^\infty e^{-u\beta^e} \frac{-\pi i J_0[R\beta^e(u)] - i Y_0[R\beta^e(u)]}{\Omega - (1/4\pi i)[J_0[r\beta^e(u)] - i Y_0[r\beta^e(u)]]} \frac{du}{u}$$

(A3)

The corresponding integral over EF may be written as

$$I_{EF} = \frac{Q}{2\pi^2 T i} \int_0^\infty e^{-u\beta^e} \frac{K_0[R\beta^e(u/2)]}{\Omega + (1/2\pi T)K_0[r\beta^e(u/2)]} du$$

(A4)

or

$$I_{EF} = \frac{Q}{2\pi^2 Ti} \int_0^\infty e^{-u\beta^e} \frac{i\pi i J_0[R\beta^e(u)] + i Y_0[R\beta^e(u)]}{\Omega + (1/4\pi i)[J_0[r\beta^e(u)] + i Y_0[r\beta^e(u)]]} \frac{du}{u}$$

(A5)

On the small circle, $\lambda = au^2\beta^e$. Therefore

$$I_{DC} = \lim_{\beta \to 0} \frac{Q}{4\pi^2 T i} \int_{-\infty}^{\infty} e^{-u\beta^e} \frac{K_0[R\beta^e(u/2)]}{\Omega - (1/2\pi T)K_0[r\beta^e(u/2)]} du d\theta$$

(A6)

Noting that when $z \to 0$, $K_0(z) \approx -\ln z$, one can write

$$I_{DC} = \lim_{\beta \to 0} \frac{Q}{4\pi^2 T i} \int_{-\infty}^{\infty} \frac{\ln(R\beta^e(u/2))}{\Omega - (1/2\pi T)\ln(r\beta^e(u/2))} du d\theta$$

(A7)
Using L'Hopital's rule, it can be shown that \(I_{Bw} = Q \). Therefore

\[
Q_d(t) = Q \frac{Q}{4\pi T} \int_0^\infty e^{-u} J_0(4\pi r/u) \frac{J_0(4\pi r/u) - J_1(4\pi r/u)}{u} du
- \frac{Q}{4\pi T} \int_0^\infty e^{-u} J_0(4\pi r/u) \frac{J_0(4\pi r/u) + J_1(4\pi r/u)}{u} du
\]

(A8)

Simplifying (A8), we obtain

\[
Q_d(t) = Q - \frac{2Q}{\pi} \int_0^\infty e^{-u} J_0(4\pi r/u) \frac{J_0(4\pi r/u)[4\pi \Omega - Y_0(\omega_r)] + J_0(4\pi r/u) Y_0(4\pi r/u) \omega_r du}{[4\pi \Omega - Y_0(\omega_r)]^2 + J_0^2(4\pi r/u)}
\]

(A9)

Equation (A9) gives the leakage rate from the abandoned well located at a distance \(R \) from the injection well.

Notation

- \(\text{Ei} (-x) \): exponential integral, equal to \(\int_0^\infty e^{-x} \frac{dy}{y} \)
- \(H_1 \): initial head difference between aquifers A and B in the vicinity of the abandoned well (\(h_A - h_B \)), meters.
- \(h_2 \): drawdown due to leakage through the abandoned well, observed at a monitoring well, meters.
- \(h_3 \): initial hydraulic heads in aquifers A and B, meters.
- \(\Delta h_2 \): net increase in hydraulic head at the abandoned well (well 2) in aquifer B, meters.
- \(J_0(x) \): Bessel function of first kind and zero order.
- \(K_0(x) \): Modified Bessel function of second kind and zero order.
- \(p \): Laplace transform parameter.
- \(Q \): injection rate through well 1, \(m^3/s \).
- \(Q_d \): leakage rate through the abandoned well, \(m^3/s \).
- \(Q_{Bw} / Q \): dimensionless leakage rate.
- \(R \): distance between injection and abandoned wells, meters.
- \(R_0 \): dimensionless radius, equal to \(r_0/R \).
- \(r_w \): effective radius of the abandoned well, meters.
- \(r_1 \): distance between abandoned and injection wells, meters.
- \(r_2 \): distance between abandoned and monitoring wells, meters.
- \(r_{w0} \): dimensionless radius of abandoned well, equal to \(r_{w0}/R \).
- \(s_w \): drawdown at the abandoned well due to leakage through it, meters.
- \(T \): transmissivity of aquifer B (injection zone), \(m^2/s \).
- \(t \): time since the start of injection, seconds.
- \(t_0 \): dimensionless time, equal to \(at/R^2 \).
- \(Y_0(x) \): Bessel function of second kind and zero order.
- \(\alpha \): diffusivity of aquifer B (injection zone), \(m^2/s \).
- \(\Omega \): hydraulic resistance of the abandoned well between aquifer A and aquifer B, \(s/m^2 \).
- \(\Omega_D \): dimensionless hydraulic resistance of the abandoned well, equal to \(2\pi T \Omega \).

Acknowledgments. The work upon which this publication is based was performed in part pursuant to Interagency Agreement DW89931336-01-0 between the U.S. Environmental Protection Agency and the U.S. Department of Energy, and in part under U.S. Department of Energy contract DE-AC07-76SF00098. Although this work has been reviewed by the U.S. Environmental Protection Agency, this does not signify that the contents necessarily reflect the views and policies of that agency. The authors would like to thank Marcello Lippmann and T. N. Narasimhan for reviewing this manuscript.

REFERENCES

Ground Water Institute, University of Oklahoma, Norman, 1984.

Theis, C. V., The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos Trans. AGU, 16, 519-524, 1935.

I. Javandel, C. F. Tsang, and P. A. Witherspoon, Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.

(Received March 19, 1987; revised October 8, 1987; accepted October 13, 1987)