Myopia Control: Bringing nearsighted treatment into focus

Brenda Bohnsack, MD, PhD
Rahul Bhola, MD, MBA
K. David Epley, MD
Noreen Shaikh, OD
Magdalena Stec, OD
Allison Summers, OD, MCR
Pathogenesis of Myopia

Brenda L. Bohnsack, MD, PhD
Division Head, Pediatric Ophthalmology
Ann & Robert H. Lurie Children’s Hospital of Chicago

No Financial Interest
The Myopia Epidemic: Predicted Prevalence in 2030

North America: 49%

Western Europe: 45%

Middle East - North Africa: 39%

Southeast Asia: 52%

East Asia: 57%

Southern Latin America: 41%

Southern Africa: 18%

Oceania: 13%
The Myopia Boom: General Trends from 2000 to 2050 (Meta-analysis)

Summary of original data from 145 studies

- From 2000 → 2050
- >3 billion *more* people globally with myopia
- >775 million *more* with high myopia
- Potential for increased prevalence of complications (e.g. retinal detachment, choroidal neovascularization, glaucoma)

Increase in myopia is driven by both *lifestyle changes and genetics*

Myopia and Its Association with Visual Impairment & Blindness

Odds ratio of ocular disease relative to emmetropia

<table>
<thead>
<tr>
<th>Eye Disease</th>
<th>-2.00 D</th>
<th>-4.00 D</th>
<th>-6.00 D</th>
<th>-8.00 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myopic Maculopathy²</td>
<td>2.2x higher</td>
<td>9.7x higher</td>
<td>40.6x higher</td>
<td>126.8x higher</td>
</tr>
<tr>
<td>Retinal Detachment³</td>
<td>3.1x higher</td>
<td>9.0x higher</td>
<td>21.5x higher</td>
<td>44.2x higher</td>
</tr>
<tr>
<td>PSC Cataract⁴</td>
<td>1.6x higher</td>
<td>3.2x higher</td>
<td>5.4x higher</td>
<td>12.3x higher</td>
</tr>
<tr>
<td>Glaucoma⁵</td>
<td>1.7x higher</td>
<td>2.5x higher</td>
<td>2.5x higher</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Higher rates of myopic macular degeneration (MMD) lead to worsening visual impairment (VI)

Visual Impairment and Blindness associated with Myopia is predicted to increase over the next 30 years

Impact of Reducing Myopia Over a Lifetime: “Every Diopter Matters”

Each 1-diopter *increase* in myopia is associated with an increased lifetime risk of:

- 67% in the prevalence of *myopic maculopathy*¹
- 25% in *visual impairment*¹
- 30% in the incidence of *retinal detachment*²
- 20% in the prevalence of *glaucoma*²

Each 1-diopter *decrease* in myopia is associated with a decreased lifetime risk of:

- **-40%** Maculopathy¹
- **-20%** Glaucoma²
- **-20%** Visual Impairment¹

¹ Bullimore M, Brennan N. Optom Vis Sci 2019;96:463
Normal Ocular Growth and Emmetropization

• Ocular growth
 • Mostly through expansion of vitreous chamber
 • Smaller changes in cornea and lens refractive power

• Emmetropization
 • Newborn: +2.00 to +4.00 with axial length ~17 mm
 • 2-5 years old: +0.50 to 1.00 with axial length ~22 mm
 • ≥6 years: eye growth stabilizes, with only 1-1.5 mm additional growth through teenage years
Mechanisms of Myopia

• Feedback from visual cues focused on the peripheral retina regulates emmetropization
• Peripheral hyperopic defocus drives axial growth
• Form Deprivation – Deprivation of form or pattern vision
• Lens Defocus – Hyperopic defocus
• Other factors:
 • Higher order aberrations
 • Accommodation lag
 • Circadian rhythm
Genetic Influences of Myopia

- Highly heritable, complex trait
- Syndromic Myopia - ~100 genes
 - Connective Tissue Disorders – e.g. Stickler, Marfans, Ehlers Danlos, Weill-Marchesani
 - Retinal Dystrophies – e.g. X-linked RP, Congenital Stationary Night Blindness
- Non-Syndromic Myopia
 - Genome wide association studies – 100s of potential genes
 - Molecular effects of these genes to be determined
Environmental Influences of Myopia

• Near work/Digital screen time - Time and intensity
• Education - Near work, light exposure, outdoor time
• Urbanization/Population density - Education, near work, outdoor time
• Light exposure - Light intensity and exposure, light wavelengths
• Outdoor time - Light intensity and exposure
Myopia Control

- Modifying environmental factors
 - Decreased intensity and time of near work
 - Increased outdoor time

- Myopia control treatment
 - Pharmacologic - Low dose atropine
 - Refractive strategies - Soft contact lenses, orthokeratology, bifocals, aspheric spectacles
Myopia Control Considerations

• Refractive error guidelines for starting treatment
• Choice of treatment
 • Age and cooperation
 • Refractive error
 • Activities and lifestyle
 • Cost
• Diversity, equity and inclusion considerations in myopia control treatments
Myopia Control:
Low Dose
Atropine

Rahul Bhola, MD, MBA
Section Chair and Medical Director Ophthalmology
Children’s Hospital of Orange County

No Financial Interest
Atropine usage for myopia control is off-label in the US.
Myopia Control

• Pathophysiology of myopia involves a complex interplay of numerous environmental and genetic factors ultimately leading to progressive axial elongation.

• Despite multiple clinical trials to device appropriate treatment strategies targeting the modifiable risk factors, no single or combination treatment modality has shown ideal results.

• In the quest of ideal treatment of Myopia, many pharmacological, optical and environmental modalities are explored.
Pharmacotherapeutic Candidates for Myopia

There is a lot of enthusiasm centered around pharmacotherapeutic interventions at different levels but so far only Atropine and Pirenzapine have shown benefits in retarding myopia progression in human population.

Mechanism of Atropine in Slowing Eye Growth

• Accommodative pathway
• Muscarinic receptor pathways in the retina, choroid, and sclera
• Other Receptors: α_2-adrenergic receptors playing a role in regulating dopamine synthesis
• Multiple pathways involving both muscarinic as well as adrenergic receptors – concentration dependent
Current Evidence of Atropine on Myopia Control

• Atropine for the treatment of Myopia (ATOM1) 2003: Atropine 1% eyedrops was effective in controlling myopic progression over a 2-year period when compared to a placebo.

• Atropine for the treatment of Myopia (ATOM2 phase-1) 2012: Atropine 0.01% had minimal side effects compared with atropine 0.1% and 0.5% and retained comparable efficacy in controlling myopia progression.

• Atropine for the treatment of Myopia (ATOM2 phase-2) 2013: Washout period, showed myopic rebound after atropine was stopped which was greater for higher dosage.

• Atropine for the treatment of Myopia (ATOM2 phase-3) 2015: Over 5 years, atropine 0.01% eyedrops were more effective in slowing myopia progression with less visual side effects compared to higher doses.
Strong evidence that myopia progression can be slowed pharmacologically by using Atropine Eyedrops.

Low dose Atropine (0.01% and 0.1%) had comparable clinical efficacy to high dose Atropine for slowing Myopia progression over a 2-year period.

Post Cessation myopic rebound was higher in patients on higher dosage of Atropine.

Over 5 years, atropine 0.01% eyedrops were more effective in slowing myopia progression with less visual side effects compared to higher doses.

Current Evidence of Atropine on Myopia Control (ATOM Study)
Current Evidence of Atropine on Myopia Control

• Low-Concentration Atropine for Myopia Progression phase 1 (LAMP) 2018: First Randomized placebo controlled double masked trial compared 0.05%, 0.025% and 0.01% Atropine. Showed that all 3 concentrations of atropine reduced myopia progression when compared with placebo, along with a concentration dependent response.

• LAMP phase 2 report 2020: Over 2 years, the efficacy of 0.05% atropine was double that observed with 0.01% remaining the optimal concentration in slowing progression of myopia. Concentration dependent response persisted over the 2 year.

• LAMP phase 3 report 2022: 0.05% Atropine remained the optimal concentration over 3 years. Stopping treatment at an older age and lower concentration was associated with a smaller rebound.
Confirmed the efficacy of Low-concentration atropine in slowing myopia progression.

0.05% Atropine remained the optimal concentration with maximum efficacy among low dose atropine in slowing myopia progression both over 2 and 3 years.

Stopping treatment at an older age and lower concentration was associated with a smaller rebound.
Age Effect on treatment Responses to different concentrations of low dose Atropine (LAMP study). 2021

Younger Children (4-12 years) required the highest (0.05%) concentration to achieve similar reduction in myopia progression as older children receiving lower concentrations

Younger patients should be administered a higher concentration (0.05%) irrespective of the degree of myopia or parental myopia.
Efficacy and Safety of 8 Atropine concentrations for Myopia Control in Children (A Network Meta-Analysis). 2022: 0.05% atropine was comparable with that of high dose atropine (1% and 0.5%)
Effect of Low Concentration Atropine in Delaying Myopia Onset

Among children 4 to 9 years without myopia, nightly use of 0.05% atropine eyedrops compared with placebo resulted in a significantly lower incidence of myopia and lower percentage of participants with fast myopic shift at 2 years.

Effect of Low Concentration Atropine in Delaying Myopia Onset

- Effect of Low-Concentration Atropine vs. Placebo on Myopia Incidence in Children (LAMP2 RCT)

Secondary Outcome
At 2 years 0.05% atropine decreased spherical equivalent myopic shift and axial length elongation significantly more than 0.01% atropine
• Effect of Low-Concentration Atropine vs. Placebo on Myopia Incidence in Children (LAMP2 RCT)

Exploratory Outcome

• Cumulative myopia incidence in the 0.05% significantly lower than that of 0.01%.
• Delay of Myopia onset in the 0.05% atropine group compared with both 0.01% and placebo.
AI-Powered Data Analytics

Effect of Low-Concentration Atropine on Myopia Incidence in Children vs Placebo on Myopia Incidence in Children (LAMP2 RCT)

Refraction Progression

Treatments

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Label</th>
<th>Eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07.04.2015 – 03.15.2016</td>
<td>Atropine 0.02%</td>
<td>Both</td>
</tr>
<tr>
<td>2</td>
<td>03.15.2016</td>
<td>Atropine 0.05%</td>
<td>Both</td>
</tr>
</tbody>
</table>
Our Practice Data

Effect of Low-Concentration Atropine on Myopia Incidence in Children vs Placebo on Myopia Incidence in Children (LAMP2 RCT)

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Atropine 0.01%</th>
<th>Atropine 0.025%</th>
<th>Atropine 0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>107</td>
<td>29</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>Number of males</td>
<td>53 (0.50%)</td>
<td>15 (0.52%)</td>
<td>17 (0.46%)</td>
<td>12 (0.67%)</td>
</tr>
<tr>
<td>Age</td>
<td>10.13 ± 2.62</td>
<td>8.11 ± 2.40</td>
<td>8.51 ± 2.45</td>
<td>9.67 ± 3.21</td>
</tr>
<tr>
<td>Range of age</td>
<td>4 to 18</td>
<td>4 to 18</td>
<td>4 to 18</td>
<td>4 to 18</td>
</tr>
<tr>
<td>Duration of follow-up</td>
<td>16.46 ± 6.13</td>
<td>15.92 ± 5.57</td>
<td>16.75 ± 6.18</td>
<td>16.71 ± 6.86</td>
</tr>
<tr>
<td>Change in AL (mm)</td>
<td>0.09 ± 0.36</td>
<td>0.10 ± 0.17</td>
<td>0.09 ± 0.49</td>
<td>0.08 ± 0.23</td>
</tr>
<tr>
<td>Change in SE (D)</td>
<td>-0.06 ± 0.36</td>
<td>-0.13 ± 0.36</td>
<td>-0.07 ± 0.14</td>
<td>-0.20 ± 0.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Caucasian</th>
<th>South Asian</th>
<th>Asian</th>
<th>Hispanic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>107</td>
<td>19 (17.8%)</td>
<td>32 (29.9%)</td>
<td>36 (33.6%)</td>
</tr>
</tbody>
</table>
Our Practice Data – Axial Length Change with Atropine Dose

Effect of Low-Concentration Atropine on Myopia Incidence in Children Vs Placebo on Myopia Incidence in Children (LAMP2 RCT)
Clinical Guidelines for Atropine Dose

Higher Concentration Treatment reaches its maximum effect during the initial phase-

Start with a higher concentration

Better efficacy with lower concentration over time possibly due to cumulative effect over time

Switch to lower concentration after loading dose once myopia progression becomes stable
Screen All Children for Myopia

High Risk Children Without Myopia
SE +1.00 and 0 AND at least 1 parent with SE>-3.00

Age: Less than 4 years of Age
- Discussion about Myopia with family
- Discuss Increasing outdoor time
- Follow up in 6 months

Age: 4 year or greater
- Discussion about Myopia with family
- Discuss Increasing outdoor time
- Consider starting 0.05% atropine
Screen All Children for Myopia

Children With Myopia

Age: Less than 4 years of Age

- Discussion about Myopia with family
- Increase outdoor time
- Chart baseline SE and AL
- Consider starting 0.05% atropine and/or Peripheral defocus glasses

Age: 4 year or greater

- Discussion about Myopia with family
- Increase outdoor time
- Chart baseline SE and AL
- Start 0.05% atropine
- FU in 3-4 months
Algorithm for Myopia Treatment

Start with Atropine 0.05%, Baseline SE and AL

- SE shift > -0.75 D and/or AL > 0.30 mm
- Start exploring combined therapies

4 months

- SE shift < -0.75 or AL change < 0.3 mm
- Continue 0.05% Atropine

8 months

- SE shift < -0.75 or AL change < 0.3 mm
 after 1 year consider decreasing 0.01% Atropine
Practice Considerations for Atropine Treatment

K. David Epley, MD
Pediatrics Eye Care

No Financial Interest
Atropine usage for myopia control is off-label in the US.
When Does Atropine Become Available Commercially?

- **Vyluma (CHAMP) US, EU – Phase 3**
 - N=576, completed Q3, 2022
 - Uses well-known excipients
 - Preservative free, daily ampules

- **Syndexis (STAAR): US, EU – Phase 3**
 - N=840, expected completion Q3, 2024
 - Uses deuterated (heavy) water known as deuterium oxide
 - Not a commonly used vehicle in topical ophthalmic products
 - Contains preservative

- **Bausch / Eyenovia (CHAPARONE): US only – Phase 3**
 - N= 420, expected completion Q3, 2025
 - Uses micro-dosing technology with handheld device to spray on eye
 - Contains preservative
Compounded Low Dose Atropine

• Many local compounding pharmacies are doing this.

• www.compoundingpharmacies.org has a directory of locally owned compounding pharmacies.

• Be sure to write "compounded" on your Rx; even though you discuss with families, many take the Rx to a regular pharmacy and get 1%!

• Exipients (vehicle), pH and stability can vary widely.

• Large compounding pharmacies like Leiter's, Axis, CAPS, etc. can mail.

• Best practice: call your local compounding pharmacy and have a conversation with their head pharmacist to discuss how you are using, pH, need for a product that stays in solution for 3 months, cost, etc.
 • Keep the conversation ongoing as you get feedback from families
 • 1 10mL bottle should last 3 months and should cost <$100.
Side Effects of Atropine

• Most common: stinging and burning
 • Putting the bottle in the refrigerator may help with this.
 • May help or hurt with longevity of the product based on excipients used.
• Blurred vision
• Photosensitivity
• Anticholinergic side effects

Anticholinergic Toxidrome

Mnemonics for Anticholinergic Side Effects:
- Can't SEE
- Can't PEE
- Can't SPIT
- Can't SHIT
Preserved vs. Non-preserved low dose atropine: risks of preservative

Known effects of BAK

Conjunctiva
- Disrupts lipid layer
- Reduces mucin production
- Unstable tear film

Tear film
- Inflammatory cell infiltration
- Mucous cell loss
- Scarring of ocular surface

Cornea
- Disruption of epithelial barrier
- Neurotoxicity
- Metaplasia

Trabecular meshwork
- Trabecular apoptosis
- Oxidative stress
- Long term degeneration leading to outflow resistance

Topical drops with BAK stimulate an inflammatory response ~3 months that is maintained; PF drops do not.

Preservative free formulations are preferred for chronic topical medications

https://www.sigmaaldrich.com/ Benzalkonium Chloride Safety Data Sheet
What About Preventing Myopia?

• Atropine for the treatment of Myopia 3 (ATOM3)
 • Estimated study completion is May of 2023.
• No other trials published demonstrating a preventive effect at this time.
• LAMP2 Study
Ways to Prevent or Slow Myopia Progression

• Time spent outdoors
• Increase working distance
• Reduce intensity of near work
• Take reading/near work breaks (20/20/20 rule)

• Starting to sound like your nagging parents, right?
A meta-analysis by Sherwin, et al demonstrated an association between the time spent outdoors and myopia in children and adolescents (N≈10,000)

Results
- There was a significant protective association between increasing time spent outdoors and reducing the risk of:
 - Myopia
 - Myopia progression
- **An increase** in 7 hours of **time spent outdoors** per week (1 hr/d) reduces the risk of myopia

Serum 25-OH Vit D is a surrogate for time spent outdoors and impacts the risk of myopia at 20 years (N=1,344)

Serum 25-OH Vit D concentration has the potential to be a biomarker to measure a child’s *time spent outdoors*
In myopic children aged around 10 years in Taipei, the following behaviors are protective in myopia prevalence and progression:

- Increasing reading distance, taking reading breaks, and increasing outdoor time slowed myopia progression.

N = 10,743 students completed 2-year refraction data.
Study of a US Population Treated with 0.01% Atropine for Myopia Control

Retrospective case-control study of US children treated with 0.01% atropine corroborated results found in Asia

Our Data from Four US Sites

• Four Sites Across the US
 • Casey Eye Institute (Portland, OR)
 • Children’s Hospital of Orange County (Orange, CA)
 • Pediatrix Eye Care (Kirkland, WA)
 • Lurie Children’s Hospital of Chicago (Chicago, IL)

• Retrospective chart reviews
• At least 6 months of follow up
Children’s Orange County Data

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Atropine 0.01%</th>
<th>Atropine 0.025%</th>
<th>Atropine 0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>107</td>
<td>29</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>Number of males</td>
<td>53 (0.50%)</td>
<td>15 (0.52%)</td>
<td>17 (0.46%)</td>
<td>12 (0.67%)</td>
</tr>
<tr>
<td>Age</td>
<td>10.13 ± 2.62</td>
<td>10.11 ± 2.40</td>
<td>10.51 ± 2.45</td>
<td>9.67 ± 3.21</td>
</tr>
<tr>
<td>Range of age</td>
<td>4 to 18</td>
<td>4 to 17</td>
<td>5 to 18</td>
<td>5 to 15</td>
</tr>
<tr>
<td>Duration of follow-up</td>
<td>6.46 ± 6.13</td>
<td>5.92 ± 5.57</td>
<td>6.75 ± 6.18</td>
<td>6.71 ± 6.86</td>
</tr>
<tr>
<td>Change in AL (mm)</td>
<td>0.09 ± 0.36</td>
<td>0.10 ± 0.17</td>
<td>0.09 ± 0.49</td>
<td>0.08 ± 0.23</td>
</tr>
<tr>
<td>Change in SE (D)</td>
<td>-0.06 ± 0.36</td>
<td>-0.13 ± 0.36</td>
<td>-0.07 ± 0.14</td>
<td>-0.20 ± 0.40</td>
</tr>
</tbody>
</table>
Lurie Children’s 1-Year Atropine Data

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Atropine 0.01%</th>
<th>Atropine 0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>59</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Number of males</td>
<td>30 (50.1%)</td>
<td>14 (48.2%)</td>
<td>16 (53.3%)</td>
</tr>
<tr>
<td>Age</td>
<td>9.2 ± 3.37</td>
<td>10.08 ± 3.69</td>
<td>8.4 ± 2.78</td>
</tr>
<tr>
<td>Range of age</td>
<td>2 to 23</td>
<td>5 to 23</td>
<td>2 to 14</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>18 (31%)</td>
<td>11 (38%)</td>
<td>9 (30%)</td>
</tr>
<tr>
<td>White</td>
<td>15 (25%)</td>
<td>11 (38%)</td>
<td>8 (27%)</td>
</tr>
<tr>
<td>Other/Hispanic</td>
<td>10 (17%)</td>
<td>9 (31%)</td>
<td>8 (27%)</td>
</tr>
<tr>
<td>Black</td>
<td>8 (14%)</td>
<td>5 (17%)</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>White/Hispanic</td>
<td>5 (8%)</td>
<td>2 (7%)</td>
<td>4 (13%)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (5%)</td>
<td>1 (3%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Change in SER</td>
<td>-0.31 ± 0.58 D</td>
<td>-0.51 ± 0.68 D</td>
<td>-0.12 ± 0.38 D</td>
</tr>
</tbody>
</table>
What is the Right Age to Initiate Myopia Therapies?

- Myopia may progress rapidly between ages of 5-15
- There is a time window for intervention
 o Changes in axial length are irreversible

At What Dose Should I Start?

• Variable practice patterns based on variable RCT data and practice philosophies.
• Open this up to the panel: at which dose do you usually start and when do you escalate the dose?
When to Stop Low Dose Atropine?

• Every randomized controlled clinical trial shows regression after cessation, varying by dose.
• None of these studies have data more than 5 years out.
• Anecdotally, we have independently noted that early cessation leads to resumed progression.
• Our practice patterns vary slightly, but all of us are tending to use atropine until completion of physical growth and two years of stable SER or Axial length.
 - 14-17 years of age.
• Typical myopia progression occurs over a 5-7 year period.
 - Children who start earlier may reach stability prior to the end of their physical growth.
Questions

- Dose of Atropine
- Age at onset
- AL Vs SE change
- Frequency of exams
- Duration of Atropine therapy
- When to stop
Optical Interventions for Myopia Control
Peripheral Defocus Contact Lenses

Magdalena Stec, OD, FAAO
Assistant Professor
Ann & Robert H. Lurie Children’s Hospital of Chicago

No Financial Interest
Peripheral Defocus Contact Lens (PDCL)

Myopic defocus
Efficacy of PDCLs vs. Spherical Lenses (Spherical Equivalent)

Efficacy of PDCLs vs. Spherical Lenses (Axial Length)

Peripheral Defocus Designs

- Acuvue Oasys
- Cooper Vision Biofinity
- Cooper Vision MiSight
- Visioneering Naturalvue
MiSight (CooperVision)

- FDA approved for Myopia CONTROL in 2019
- Daily disposable soft contact lens
- **59% less myopic progression** in randomized controlled study (8-12 years old; 7 year study with 1 year washout period)
- **52% less axial length elongation**
- **No rebound effect**

- ~$1200 for a year supply
- Power availability: **-0.50 to -7.00**

Extended Depth of Focus (EDoF) Lenses

Traditional multifocal lenses have two focal points.

Light
Near Distance

Extended Depth of Focus
Wide Range of Clear Vision
Extended Depth of Focus (EDoF) Lenses
Extended Depth of Focus (EDoF) lenses

• Designed for Presbyopia – used off-label for myopia control
 - Extended depth of focus design
 - Soft daily disposable
• Randomized controlled study expected in 2025
• Retrospective case series - 196 patients; ages 6-19
 – follow up 6-24 months
 – patient's historical data used as control
• 95% of wearers showed a decrease in myopia progression
 – Average myopia progression slowed by 0.85D (85%) compared to baseline
 – Axial length measured on a subset of patients was ~0.10mm per year through 47 months of follow up
• ~$800 for a year supply
• Power availability: +4 to –12.25

Biofinity Multifocal (CooperVision)

• Monthly contact lens with +2.50 add; Distance center lens

• BLINK study results:
 - 43% less myopic progression versus single vision in patients 7-11 years old over a 3-year period
 - 36% less axial elongation

• Patient cost:
 - $360 for a year supply
 - $720 for toric

Contact Lens Comparison

<table>
<thead>
<tr>
<th>BC Diameter</th>
<th>MiSight (CooperVision)</th>
<th>Naturalvue Multifocal (Visioneering)</th>
<th>Biofinity (CooperVision) Multifocal +2.50D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>8.6</td>
<td>8.3</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>14.2</td>
<td>14.5</td>
<td>14.0</td>
</tr>
<tr>
<td>Fit</td>
<td>Centered</td>
<td>Centered</td>
<td>Centered</td>
</tr>
<tr>
<td>Movement</td>
<td>+1mm or easy push</td>
<td>+1mm or easy push</td>
<td>+1mm or easy push</td>
</tr>
</tbody>
</table>

Power	-0.50 to -7.00	+4.00 to -12.25	+6.00 to -10.00
Follow Up	4 weeks after training 6 months 12months	4 weeks after training 6 months 12months	4 weeks after training 6 months 12months
Staff Time	Optician 60 min Technician 10 min	Optician 60 min Technician 10 min	Optician 60 min Technician 10 min
Other Optical Interventions: Spectacle Lenses and OrthoK

Noreen Shaikh, OD, FAAO
Ann and Robert H. Lurie Children’s Hospital

No Financial Interest
Bifocal and Progressive Add (PAL) Spectacle Lenses

• Bifocals offer moderate myopia control
 - Effective regardless of binocularity with +1.50D Add and 3 BI Prism in each eye
 - Prismatic bifocals reduce progression by 1D (50%) over 3 years (0.50D more than bifocals alone)
• PALs offer a small myopia control effect
 - Reduce myopic progression by 0.20D over 3 years and 0.26D over 2 years
 - In patients with high accommodative lag or near esophoria, reduced myopic progression by 0.18D (24%) in a single year

Aspheric Spectacle Lenses

New Kids on the Block
Aspheric Spectacle Lenses

New Kids on the Block

Stellest (Essilor)
- HALT technology
- FDA approved for research studies in the US

Miyosmart (Hoya)
- DIMS technology

Sightglass (Coopervision)
- DOT technology

Not currently available in the US
Defocus Incorporated Multiple Segments (DIMS)

- Central distance focus zone (9mm)
- Ring of +3.5D defocus segments with clear distance correction in between
- Two-year RCT with 8-13 yo with SER between -1.00 and -5.00D.
- SER and Axial Length change was 52% (-0.44D) and 62% less in DIMS compared to SV
- 13% continued to progress – mostly between 8-9 years old

Highly Aspherical Lenslet Target (HALT)

• 11 concentric rings of lenslets that provide an aspherical zone of defocus with clear distance vision in between
• Aspherical lenses deviate rays of light continuously in a nonlinear manner that creates a three-dimensional quantity of light in front of the retina
• Two-year RCT - 8-13 yo with -0.75 to -4.75D at baseline
• SER and AL change 55% and 51% less in HAL vs SV; 67% and 60% less if worn for 12+ hrs per day
• HAL was more effective than SAL by 37% and 33% for SER and AL respectively

Diffusion Optics Technology (DOT)

- Thousands of microscopic light scattering elements dispersed throughout the lens.
- High contrast environmental cues may drive axial elongation
- 12 mo results from ongoing 36-month RCT – 6 to 10 yo with SER from -0.75 to -4.50D
- SER and AL reduction by 74% (0.4D) and 59% (0.15mm) respectively in DOT vs SV
- Effective for young – 6 to 7 yo with ave 0.56D less refractive progression versus the control group over one year
- 2 yr abstract at ARVO – 0.52 D less than control, 0.21 less axial elongation
Aspheric Spectacle Lenses Summary

<table>
<thead>
<tr>
<th></th>
<th>Stellest (Essilor)</th>
<th>Miyosmart (Hoya)</th>
<th>Sightglass (CooperVision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>HALT</td>
<td>DIMS</td>
<td>DOT</td>
</tr>
<tr>
<td>Lens Center</td>
<td>Clear Single Vision Distance Zone</td>
<td>Clear Single Vision Distance Zone</td>
<td>Clear Single Vision Distance Zone</td>
</tr>
<tr>
<td>Lens Periphery</td>
<td>Background of Single Vision</td>
<td>Background of Single Vision</td>
<td>Background of Single Vision</td>
</tr>
<tr>
<td>Middle Zone</td>
<td>Lenslets</td>
<td>Lenslets</td>
<td>Diffusion Optics
Reduced contrast signaling in periphery</td>
</tr>
<tr>
<td></td>
<td>11 contiguous rings with different powers
Distance vision correction between lenslets</td>
<td>1mm +3.50 lenslets
Distance vision correction between lenslets</td>
<td></td>
</tr>
<tr>
<td>Accomodation and Binocularity</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Data Available</td>
</tr>
</tbody>
</table>
Orthokeratology

• Gas permeable lenses worn overnight to temporarily reshape the cornea to correct refractive error

• The corneal epithelium is reshaped by the fluid dynamics of the tear layer under the orthokeratology lens and positive push force.\(^3\)

• The cornea returns to its original shape upon discontinuation of lens wear after 7-10 days.\(^1,2\)

• Tear film between lens and central cornea: 1-10μm\(^1\)
• Positive push force on lens by lids leaving a thin tear film below.\(^1\)
• Negative pull forces due to fluid in the reverse geometry portion of the lens creates a suction force resulting in mid peripheral steepening.\(^1\)

Orthokeratology – How it Works

1. Place the lens on the eye overnight

2. Forces
 - Central compression
 - Mid-peripheral suction

3. Epithelium redistribution
 - Central thinning
 - Mid-peripheral thickening
Abiliti OrthoK Lens (Johnson & Johnson)

• Received FDA approval for myopia management
• Improved safety implemented into design:
 - Reverse geometry lens design with secondary curve steeper than base curve, creating greater centration and stability
 - Software-generated lens based on topography
 - 10 microns of apical clearance
 - Fenestrations in lens to reduce risk of binding
 - High oxygen permeability ($Dk = 182$)
 - Air Optix Night and Day ($Dk = 140$)
OrthoK Efficacy

- Axial elongation
 - 2 year – 0.25mm less vs. control
 - 5 year – 0.42mm less vs. control

- CLEAR Study
 - Greatest effect in first year, then tapers
 - Greater efficacy for higher levels of myopia and Asian children vs Caucasian 0.28 vs 0.22

- Combo therapy with Atropine 0.01% is more effective for lower levels of myopia

- Smaller optical zone has greater myopia control effect
DEI Considerations in Myopia Control Treatment

Allison Summers, OD, MCR
Associate Professor of Ophthalmology
Casey Eye Institute, Oregon Health & Science

No Financial Interest
Racial & Ethnic Differences in Myopia Progression

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Latino</th>
<th>South Asian</th>
<th>East/Southeast Asian</th>
<th>Other Asian</th>
<th>Other/Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1691</td>
<td>996</td>
<td>6327</td>
<td>215</td>
<td>1025</td>
<td>843</td>
<td>498</td>
<td>11,595</td>
</tr>
<tr>
<td>Baseline Age, yrs*</td>
<td>8.9 (1.6)</td>
<td>8.7 (1.7)</td>
<td>8.8 (1.6)</td>
<td>8.8 (1.7)</td>
<td>9.1 (1.4)</td>
<td>8.9 (1.5)</td>
<td>9.1 (1.5)</td>
<td>8.9 (1.6)</td>
</tr>
<tr>
<td>Baseline Refractive Error (RE)*</td>
<td>-1.9 (1.0)</td>
<td>-2.1 (1.0)</td>
<td>-2.0 (1.0)</td>
<td>-2.1 (1.0)</td>
<td>-2.2 (1.1)</td>
<td>-2.1 (1.0)</td>
<td>-2.1 (1.1)</td>
<td>-2.0 (1.0)</td>
</tr>
<tr>
<td>Average Yearly RE change*</td>
<td>-0.4 (0.4)</td>
<td>-0.3 (0.4)</td>
<td>-0.3 (0.4)</td>
<td>-0.5 (0.3)</td>
<td>-0.5 (0.4)</td>
<td>-0.5 (0.4)</td>
<td>-0.4 (0.4)</td>
<td>-0.4 (0.4)</td>
</tr>
<tr>
<td>Follow up, yrs*</td>
<td>3.2 (0.9)</td>
<td>3.1 (0.9)</td>
<td>3.1 (0.9)</td>
<td>3.2 (0.9)</td>
<td>3.2 (0.9)</td>
<td>3.3 (0.9)</td>
<td>3.1 (1)</td>
<td>3.1 (0.9)</td>
</tr>
</tbody>
</table>

Ethnic Differences in Myopia Prevalence & Ocular Biometry

- 10- and 11- Year Old Children in The Child Heart and Health Study in England (CHASE)

- Myopia prevalence in 1179 children
 - South Asian - 25.2%,
 - Black African Caribbean – 10.0%
 - White European - 3.4%

- Adjusted odds ratios of myopia compared with white European children
 - South Asian – 8.9 with 95% CI[4.0-19.4]
 - Black African Caribbean – 3.2 with 95% CI[1.4-7.2]

- Ethnic differences in the prevalence of myopia were largely accounted for by ethnic differences in axial length
Research Access & Representation

<table>
<thead>
<tr>
<th>Common Exclusion Criteria</th>
<th>Impact on Representation in Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astigmatism > 1.00 diopter</td>
<td>Table 2 Refractive error and ethnicity in children (Kleinstein 2003) astigmatism cut off matters</td>
</tr>
<tr>
<td>Prematurity</td>
<td></td>
</tr>
<tr>
<td>Baseline myopia < -6.00 D SE</td>
<td></td>
</tr>
</tbody>
</table>
Compounding Factors in Adherence

<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrected/under-corrected refraction</td>
<td>5th-grade students, 1794 needed glasses, those unable to afford: 22.5% without insurance, 10.9% with Medicaid 17.6% with income < $15,000 vs 2.7% with income ≥ $70,000 (Zhang 2012)</td>
</tr>
<tr>
<td>Delays in follow up</td>
<td>Visits disproportionately decreased for pediatric ophthalmology patients requiring an interpreter and self-identifying as non-White during COVID (Brettin 2022)</td>
</tr>
<tr>
<td>Less likely to receive treatment/timely refills</td>
<td>Among older cancer survivors, African-Americans were 2.64 X more likely and Hispanics 2.07 X more likely than whites to report cost-related medication non-adherence (Lee 2016) Gender inequality in global burden of uncorrected refractive error increases with age (Lou 2019)</td>
</tr>
</tbody>
</table>
Efficacy in Myopia Control: Does Race Matter?

Figure 3. One-year slowing of axial elongation and myopia progression in randomized clinical trials of 0.01% atropine. Closed bars are for East Asian children, and open bars are for Indian and Australian children.
Access to Care – Philanthropy

- Lifetime impact on vision, education, employment
- Funds for care of other eye conditions/glasses
- Clark Fund for myopia management
- Rahul’s institutional fund
- Approach local service organizations
Obstacles to Treatment – Cost of Atropine

Efficacy and Safety of 1% Atropine on Retardation of Moderate Myopia Progression in Chinese School Children

<table>
<thead>
<tr>
<th>Groups initially 330 each</th>
<th>Treatment n=262</th>
<th>Matched Controls n=308</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visits every 6 months</td>
<td>68 dropped (21%)</td>
<td>22 dropped (7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase I: 24 months</th>
<th>Atropine 1% once/ m</th>
<th>Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional treatment</td>
<td>Photochromic progressive, unknown if/when discontinued</td>
<td>“framed glasses”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase II: 12 months</th>
<th>Atropine 1% once/ 2 m</th>
<th>Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase III: 12 months</td>
<td>No atropine</td>
<td>No saline?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SER Baseline</th>
<th>-3.82+/-0.44 D</th>
<th>-3.74+/-0.51 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER 48 months</td>
<td>-4.96+/-1.22 D</td>
<td>-7.28+/-1.26 D</td>
</tr>
<tr>
<td>SER progression 48 m</td>
<td>-0.41+/-0.23 D/yr</td>
<td>-0.75+/-0.64 D/yr</td>
</tr>
<tr>
<td>AL 48 months</td>
<td>25.48+/-0.29 mm</td>
<td>26.59+/-0.20 mm</td>
</tr>
<tr>
<td>AL progression 48 m</td>
<td>0.19+/-0.13 mm/yr</td>
<td>0.40+/-0.16 mm/yr</td>
</tr>
</tbody>
</table>
Obstacles to Treatment – Cost of Atropine

<table>
<thead>
<tr>
<th>Obstacle to Initiating Treatment/Increased Frequency of Monitoring</th>
<th>Potential Methods to Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low health literacy, low perceived interest, medical mistrust</td>
<td>Helical discussion with caregiver and patient</td>
</tr>
<tr>
<td></td>
<td>Shared decision-making</td>
</tr>
<tr>
<td></td>
<td>Instructional handouts</td>
</tr>
<tr>
<td></td>
<td>Links to public awareness sites</td>
</tr>
<tr>
<td>Provider expectation of prognosis based on race/ethnicity/socioeconomic status</td>
<td>Assess risk factors</td>
</tr>
<tr>
<td></td>
<td>Treat based on findings</td>
</tr>
<tr>
<td></td>
<td>Acknowledge unconscious bias</td>
</tr>
<tr>
<td></td>
<td>Programmatic changes</td>
</tr>
<tr>
<td>Perceived ability to pay and insurance coverage</td>
<td>Discussion with caregiver</td>
</tr>
<tr>
<td></td>
<td>Noncovered service forms</td>
</tr>
<tr>
<td></td>
<td>Philanthropic funds</td>
</tr>
<tr>
<td></td>
<td>Insurance authorizations and advocacy</td>
</tr>
<tr>
<td>Language</td>
<td>Documents in common languages for area</td>
</tr>
<tr>
<td></td>
<td>In-person, video or phone interpreter services</td>
</tr>
<tr>
<td>History of poor follow up, distance from clinic, family obstacles</td>
<td>Telehealth, home VA monitoring, satellite</td>
</tr>
<tr>
<td></td>
<td>Social worker or staff resource, reminders</td>
</tr>
<tr>
<td></td>
<td>Broad clinic hours</td>
</tr>
</tbody>
</table>
Patient and family educational resources

- English: [FS115-8answers-myopiaannotated.pdf (preventblindness.org)](preventblindness.org)
- Spanish: [ESFS115-8answers-myopiacomplete.pdf (preventblindness.org)](preventblindness.org)
Select References

Select References

• Bullimore, Mark A. MCOptom, PhD; Brennan, Noel A. MScOptom, PhD. Efficacy in Myopia Control: Does Race Matter? Optometry and Vision Science 100(1):p 5-8, January 2023.

Thank you!

Rahul Bhol: rahulbhola@hotmail.com
Brenda Bohnsack: bbohnsack@luriechildrens.org
David Epley: david.epley@pediatrix.com
Noreen Shaikh: noshaihk@luriechildrens.org
Magdalena Stec: mstec@luriechildrens.org
Allison Summers: summersa@ohsu.edu