# IS IT EASIER TO *OPTIMIZE* THAN TO *ESTIMATE* IN THE PRESENCE OF INPUT MODEL RISK?

I-Sim 2017 Research Workshop
Towards an Ecosystem of Simulation Models & Data

Barry L Nelson & Eunhye Song
Department of Industrial Engineering &
Management Sciences



# SIMULATION OPTIMIZATION IN THE PRESENCE OF INPUT MODEL RISK

Amazon Supply Chain Optimization Technology Group

Barry L Nelson & Eunhye Song
Department of Industrial Engineering &
Management Sciences



## Three high-level ideas in this talk

#### 1. Validation vs. Model Risk

 "Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful?" --- G.E.P. Box

## 2. Inference about the **Simulation** vs. inference about the **'Real World'**

Optimization to the resolution of the model.

## 3. Simulation = Inputs + Logic

Is this perspective out of date?

## I am skeptical about quantitative validation

- Model validation is "the substantiation that a computerized model within its domain of applicability possesses a satisfactory range of accuracy consistent with the intended application."
  - Bob Sargent, WSC '16
- There has been great work on systematic approaches, but such validation is...
  - Difficult (certainly time consuming)
  - Rarely done unless mandated (pushed to late in the project)
  - Does not tell us what to do if it "fails" (cancel the project?)
  - Does not account for your remaining exposure if it succeeds.
- We are good at hedging against risks if we can characterize "how wrong?" → Change the focus to model risk.

## A success story: Input model risk

- We drive simulations with a set  $\mathbf{F} = \{F_1, F_2, \dots, F_L\}$  of input models for service times, machine failures, customer characteristics, etc.
- The simulation output depends on the models we choose

$$Y(\mathbf{F}) = \mu(\mathbf{F}) + \varepsilon(\mathbf{F})$$

The output could be an average, an indicator variable, a variance, a sample quantile, etc.

• We use fitted distributions  $\widehat{F}$  to approximate the true "real world" so there is clearly risk:

$$Y(\widehat{F}) = \mu(\widehat{F}) + \varepsilon(\widehat{F})$$

## Two schools of thought

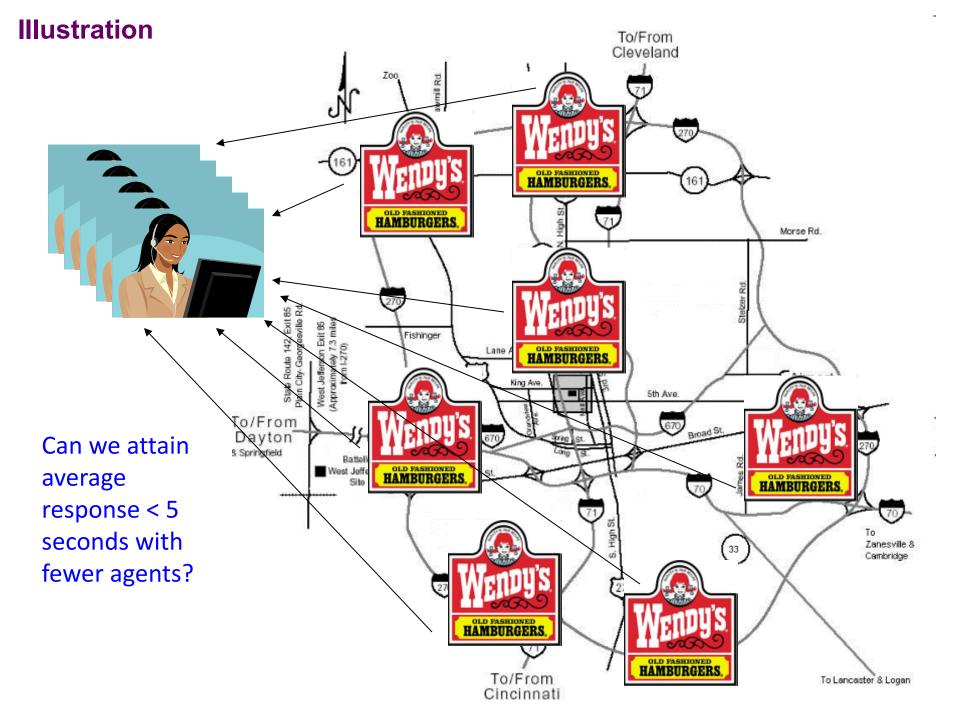
We know  $\widehat{F}$  is wrong, so what do we do?

Barton, Nelson, Schruben, Song et al.: Try to propogate the uncertainty in  $\widehat{\bf F}$  to the output  $Y(\widehat{\bf F})$  and quantify it.

Ex: Estimate  $Var[Y(\widehat{\mathbf{F}})]$  including uncertainty about  $\widehat{\mathbf{F}}$ .

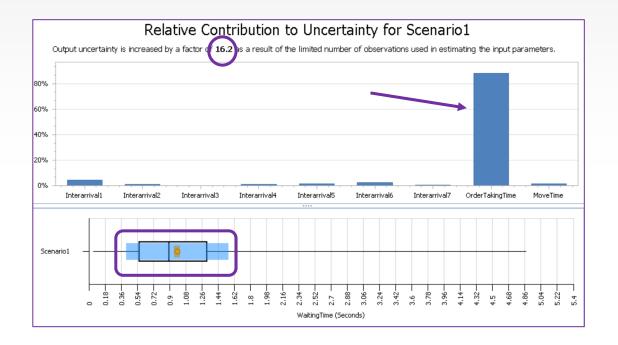
**Hong, Lam et al.:** Choose a defensive  $\widehat{\mathbf{F}}$  that protects you against the risks that matter to you.

Ex:  $\widehat{\mathbf{F}}$  that gives the worst-case expected response time within some uncertainty set consistent with the real-world data.



### Inference about the "real world"

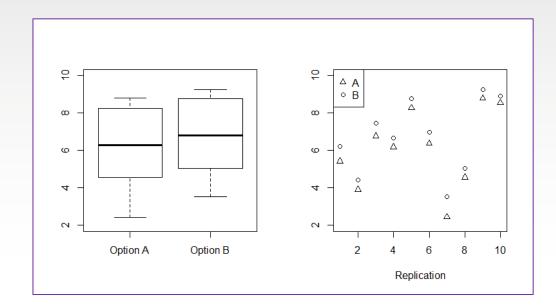
 Simio "Sample Size Error" feature based on work from S&N [IIE Transactions 47 (2015), 1-17]:



 Real-world model risk is 16.2 times larger than simulation error! This seems discouraging.

### Changes matter in model risk

- Common random numbers is based on natural variability affecting all options similarly.
- This idea is more general than just the random numbers:
  - Common input models
- Ø
- Common logical relationships



 When optimizing, model risk arises when systems are affected differently by uncertainty in random numbers, input distributions or system logic.

This <u>difference</u> is what we have to quantify, and it is easier to do so when the risks are common.

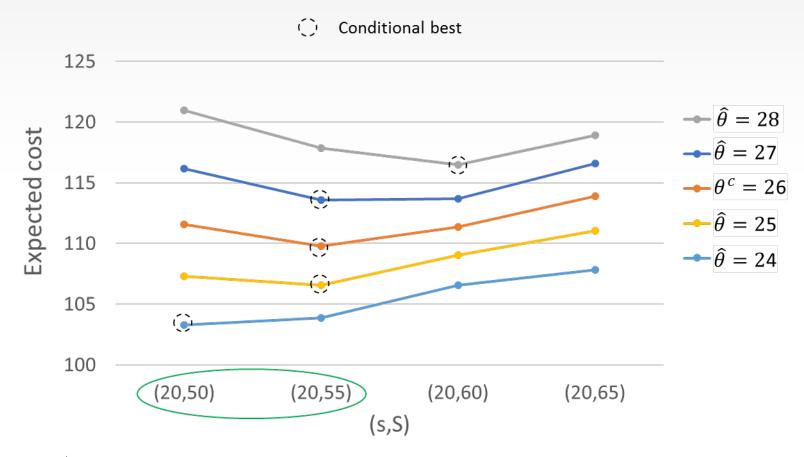
## Motivating example: (s, S) inventory

- Four candidate policies (s, S): (20, 50), (20, 55), (20, 60), (20, 65)}
- Unknown true demand Poisson( $\theta^c = 26$ )



## Impact of input uncertainty

• How  $far \hat{\theta}$  is from  $\theta^c$  and how differently the systems are affected by  $\theta$  matters. This is the **common input data** (CID) effect.



## Optimizing to the resolution of the model

- To make statements about the "real-world" optimal, we have to acknowledge the limits of the simulation model (IMHO).
  - Averaging over the sampling distribution or posterior of  $\widehat{F}$  is **not** the same thing.
  - We may not be able to identify the optimal, even if it is unique.
- Change the emphasis from selection to comparisons.
  - Identify the systems that cannot be separated from the best, given the resolution of the input models.
  - We might then apply robust/defensive selection to this subset: much less conservative.
- To make the comparisons as sharp as possible we want to exploit the common input data (CID) effect.

## Now the technical program

Our model for the CID and CRN effect is

$$Y_{i}(\hat{\theta}) - Y_{j}(\hat{\theta}) = \mu_{i}(\hat{\theta}) - \mu_{j}(\hat{\theta}) + \varepsilon_{i}(\hat{\theta}) - \varepsilon_{j}(\hat{\theta})$$

$$= \mu_{i}(\theta^{c}) - \mu_{j}(\theta^{c}) + b_{i}(\hat{\theta}, \theta^{c}) - b_{j}(\hat{\theta}, \theta^{c}) + \varepsilon_{i}(\hat{\theta}) - \varepsilon_{j}(\hat{\theta})$$

$$\approx \mu_{i}(\theta^{c}) - \mu_{j}(\theta^{c}) + (\beta_{i} - \beta_{j})^{T}(\hat{\theta} - \theta^{c}) + \varepsilon_{i}(\hat{\theta}) - \varepsilon_{j}(\hat{\theta})$$

- We want to form  $1-\alpha$  simultaneous MCB confidence intervals  $\mu_i(\theta^c) \max_{j \neq i} \mu_j(\theta^c) \in [L_i, U_i]$ ,  $\forall i$
- To do this we need to capture the joint distribution of  $(\hat{\beta}_i \hat{\beta}_j)^T (\hat{\theta} \theta^c)$  and  $\varepsilon_i(\hat{\theta}) \varepsilon_j(\hat{\theta})$  across all  $i \neq j$ .

## Input-Output Uncertainty (IOU) Comparisons

•  $(\hat{\beta}_i - \hat{\beta}_j)^T (\hat{\theta} - \theta^c)$  is the hard part.

#### Plug-in IOU-C

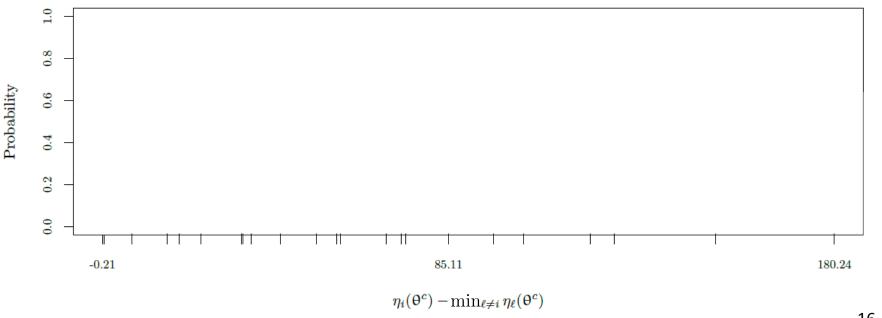
Insert your favorite gradient estimator  $\hat{\beta}$  and use the asymptotic normal distribution of  $(\hat{\theta} - \theta^c)$  from MLE.

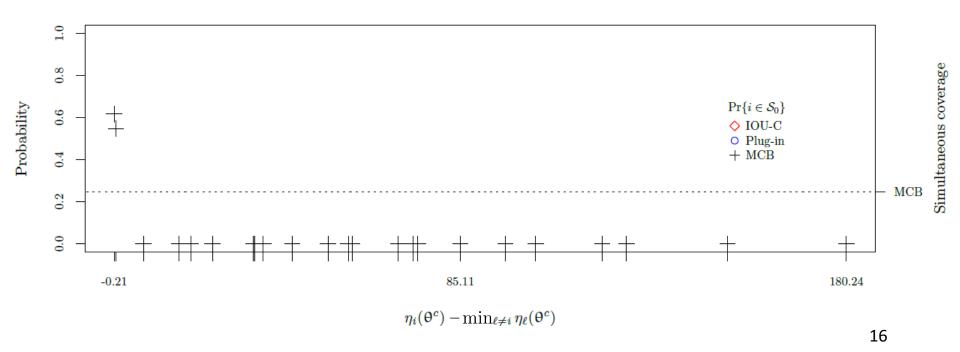
#### All-in IOU-C

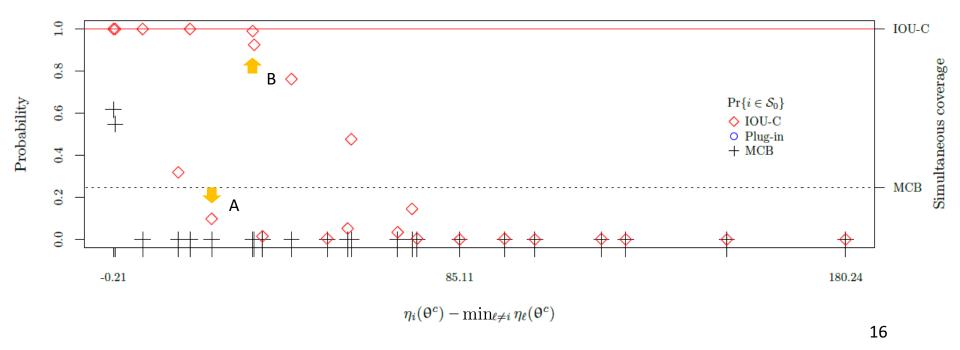
• Use asymptotically normal regression estimator  $\hat{\beta}$  and use the asymptotic normal distribution of  $(\hat{\theta}-\theta^c)$  from MLE and solve

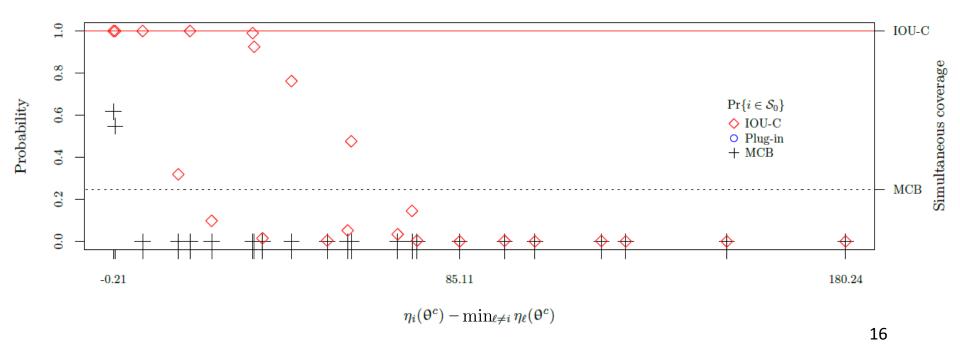
min 
$$(\beta_i - \beta_j)^T (\hat{\theta} - \theta^c)$$
  
subject to  $\mathcal{B}_i \in CR_1$  and  $(\hat{\theta} - \theta^c) \in CR_2$ 

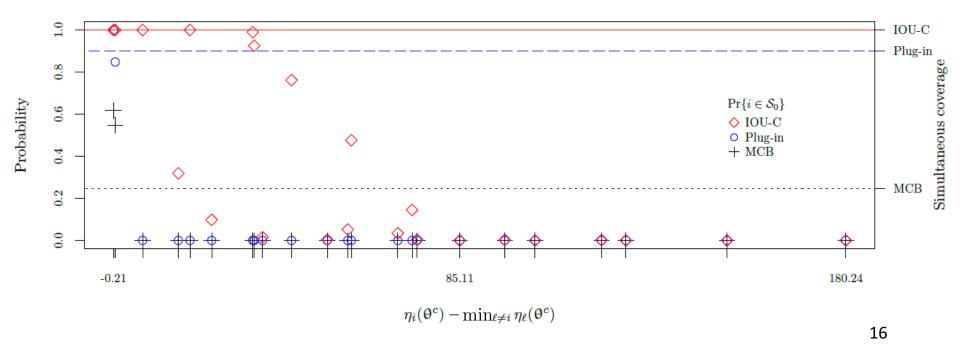
• Both can be shown to be asymptotically  $1-\alpha$  when m,n,B get large in just the right way.











## Simulation = Inputs + Logic

- I have said this for years.
  - The inputs are the statistical part, which means we can estimate error.
  - The logic is the "art" part that is either true-enough or not, right level or wrong level.
    - Tocher (1963) The Art of Simulation
  - I have acted like there is a clear distinction.
- Can we extend the definition of "input" so we can attach statistical uncertainty to the logical model?

## Logic revisited in the age of video & ML

- Suppose we have a video of the current system.
- The "logic" could be "machine learned" from dissecting it.
  - Fixed objects, dynamic objects, what follows what and with what regularity.
  - Analysis of hours of video would reveal inconsistencies, worker differences, rare events, etc. that I would never observe.
  - Therefore the logic becomes more like a statistical model.

#### Questions:

- 1. What do we do with this data?
- 2. Have we reduced simulation to data analytics?

## Regression analogy: $Y = l(x) + \varepsilon$

Think of Y as a system output,  $\mathbf x$  as a vector of controllable decision variables, and  $\varepsilon$  as system noise.

**Traditional Simulation:** We "artfully" model the logic as  $l(\mathbf{x}) = \mathbf{x}\beta^{\text{known}}$  and treat  $\varepsilon$  is an input model. Thus we can only quantify input uncertainty.

**Parametric logic:** We model the form of the logic as  $x\beta$  but we estimate  $\widehat{\beta}$  from observation. Now we can quantify some of the logical model risk.

**Nonparametric logic:** We observe  $(Y, \mathbf{x})$ , but all we know are what are the x's. Now (maybe) the overall model risk can be quantified.

## **Learning simulations**

- Statistical models can be learned from data.
  - We should be pushing as much of the simulation model as possible to being an "input."
- But we are interested in more than the observable inputoutput relationship.
  - Embedded in the data is a control x that I want to change.
- Maybe the "art" part comes in deciding what a change in x will do to the I-O relationship.
  - This might lead to a very different type of simulation model building and analysis: Modeling the impact of <u>changes</u>.

## Three high-level ideas in this talk

#### 1. Validation vs. Model Risk

Go, No-Go is not as useful as capturing the uncertainty.

## 2. Inference about the **Simulation** vs. inference about the **'Real World'**

Clearly we want the latter; to what resolution do we have it?

## 3. Simulation = Inputs + Logic

 What we want to use our modeling skill for is representing the impact of changes.